

At NowSecure we spend a lot of time attacking mobile apps - hacking, breaking
encryption, finding flaws, penetration testing, and looking for sensitive data stored
insecurely. We do it for the right reasons - to help developers make their apps more
secure. This document represents some of the knowledge we share with our clients and
partners. We are driven to advance mobile app security worldwide.

This guide gives specific recommendations to use during your development process.
The descriptions of attacks and security recommendations in this report are not
exhaustive or perfect, but you will get practical advice that you can use to make your
apps more secure.

We revise our best practices periodically and invite contributions, and the updated guide
is published here as changes are accepted into the main repository.

To learn about all the vectors that attackers might use on your app, read our Mobile
Security Primer.

Mobile Security Primer
Coding Practices

2.1 Increase Code Complexity and Use Obfuscation
2.2 Avoid Simple Logic
2.3 Test Third-Party libraries
2.4 Implement Anti-tamper Techniques
2.5 Securely Store Sensitive Data in RAM
2.6 Understand Secure Deletion of Data
2.7 Avoid Query String for Sensitive Data

Handling Sensitive Data
3.1 Implement Secure Data Storage
3.2 Use SECURE Setting For Cookies

Secure Mobile Development

USING THIS GUIDE

Table of Contents

•
•

•
•
•
•
•
•
•

•
•
•

Secure Mobile Development Best Practices | NowSecure

4Introduction

https://github.com/nowsecure/secure-mobile-development/pulls
https://books.nowsecure.com/secure-mobile-development/

3.3 Fully validate SSL/TLS
3.4 Protect Against SSL Downgrade Attacks
3.5 Limit Use of UUID
3.6 Treat Geolocation Data Carefully
3.7 Institute Local Session Timeout
3.8 Implement Enhanced/Two-Factor Authentication
3.9 Protect Application Settings
3.10 Hide Account Numbers and Use Tokens
3.11 Implement Secure Network Transmission Of Sensitive Data
3.12 Validate Input From Client
3.13 Avoid Storing App Data in Backups

Caching and Logging
4.1 Avoid Caching App Data
4.2 Avoid Crash Logs
4.3 Limit Caching of Username
4.4 Carefully Manage Debug Logs
4.5 Be Aware of the Keyboard Cache
4.6 Be Aware of Copy and Paste

Webviews
5.1 Prevent Framing and Clickjacking
5.2 Protect against CSRF with form tokens

iOS
6.1 Use the Keychain Carefully
6.2 Avoid Cached Application Snapshots
6.3 Implement Protections Against Buffer Overflow Attacks
6.4 Avoid Caching HTTP(S) Requests/Responses
6.5 Implement App Transport Security (ATS)
6.6 Implement Touch ID Properly

Android
7.1 Implement File Permissions Carefully
7.2 Implement Intents Carefully
7.3 Check Activities
7.4 Use Broadcasts Carefully
7.5 Implement PendingIntents Carefully
7.6 Protect Application Services
7.7 Avoid Intent Sniffing
7.8 Implement Content Providers Carefully
7.9 Follow WebView Best Practices

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

Secure Mobile Development Best Practices | NowSecure

5Introduction

7.10 Avoid Storing Cached Camera Images
7.11 Avoid GUI Objects Caching
7.12 Sign Android APKs

Servers
8.1 Implement Proper Web Server Configuration
8.2 Properly Configure Server-side SSL
8.3 Use Proper Session Management
8.4 Protect and Perform Penetration Testing of Web Services
8.5 Protect Internal Resources

•
•
•

•
•
•
•
•
•

Secure Mobile Development Best Practices | NowSecure

6Introduction

Mobile security entails many of the challenges of Web security – a wide audience, rapid
development, and continuous network connectivity – combined with the risks common to
more traditional fat client applications such as buffer management, local encryption, and
malware. One of the unique features to the mobile environment is the prevalence of
installed applications coming from unknown developers who should be considered
“untrusted.”

As illustrated below, a mobile attack can involve the device layer, the network layer, the
data center, or a combination of these. Inherent platform vulnerabilities and social
engineering continue to pose major opportunities for cyber thieves and thus significant
challenges for those looking protect user data.

There are three points in the mobile technology chain where malicious parties may
exploit vulnerabilities to launch malicious attacks:

Mobile Security Primer

THE MOBILE ATTACK SURFACE

Attack Vectors

Secure Mobile Development Best Practices | NowSecure

7Mobile Security Primer

The device
The network
The data center

Mobile devices pose significant risks for sensitive corporate information (SCI); key risks
include data loss and compromised security. Whether iPhone, Android or other
smartphone, attackers targeting the device itself can use a variety of entry points:

Browser, mail, or other preloaded applications
Phone/SMS
Third-party applications (apps)
Operating system
RF such as Baseband, Bluetooth and other comm channels

Browser-based points of attack can include:

Phishing – Involves acquiring personal information such as usernames, passwords, and
credit card details by masquerading as a trusted entity through e-mail spoofing.
Research has shown that mobile users are three times more likely than desktop users to
submit personal information to phishing websites. This is, in part, likely due to the scaled
down environment a mobile browser runs in, which displays only small portions of URLs
due to limited screen real-estate, limited warning dialogs, scaled down secure lock icons,
and foregoes many user interface indicators such as large STOP icons, highlighted
address bars, and other visual indicators.

Framing - Framing involves delivery of a Web/WAP site in an iFrame, which can enable
“wrapper” site to execute clickjacking attacks.

Clickjacking – Also known as UI redressing, clickjacking involves tricking users into
revealing confidential information or taking control of their device when a user clicks on a
seemingly innocuous link or button. This attack takes the form of embedded code or
scripts that execute without user knowledge. Clickjacking has been exploited on sites
including Facebook to steal information or direct users to attack sites.

•
•
•

THE DEVICE

•
•
•
•
•

Browser-based attacks

Secure Mobile Development Best Practices | NowSecure

8Mobile Security Primer

Drive-by Downloading – Android in particular has been vulnerable to this attack, where
a Web site visit causes a download to occur without user knowledge, or by tricking the
user with a deceptive prompt. The download can be a malicious app, and the user then
may be prompted automatically by the device to install the app. When Android devices
are set to allow apps from “unknown sources” the installation is allowed.

Man-in-the-Mobile (MitMo) – Allows malicious users to leverage malware placed on
mobile devices to circumvent password verification systems that send codes via SMS
text messages to users’ phones for identity confirmation.

Phone/SMS points of attack can include:

Baseband attacks – Attacks that exploit vulnerabilities found in a phone’s GSM/3GPP
baseband processor, which is the hardware that sends and receives radio signals to cell
towers.

SMiShing – Similar to phishing, but uses cell phone text messages in place of e-mail
messages in order to prompt users to visit illegitimate websites and enter sensitive
information such as usernames, passwords and credit card numbers.

RF Attacks – Bluejacking, NFC attacks and other RF exploits find vulnerabilities on
various peripheral communication channels that are typically used in nearby device-to-
device communications.

App-based points of attack can include:

Sensitive Data Storage – A 2011 viaForensics study found 83% of popular apps
sampled store data insecurely.

No Encryption/weak encryption – Apps that allow the transmission of unencrypted or
weakly encrypted data are vulnerable to attack.

Improper SSL validation – Bugs in an app’s secure socket layer (SSL) validation
process may allow data security breaches.

Phone/SMS-based attacks

Application-based attacks

Secure Mobile Development Best Practices | NowSecure

9Mobile Security Primer

Config manipulation – Includes gaining unauthorized access to administration
interfaces, configuration stores, and retrieval of clear text configuration data.

Dynamic runtime injection – Allows an attacker to manipulate and abuse the runtime
of an application to bypass security locks, bypass logic checks, access privileged parts
of an application, and even steal data stored in memory.

Unintended permissions – Misconfigured apps can sometimes open the door to
attackers by granting unintended permissions.

Escalated privileges – Exploits a bug, design flaw or configuration oversight in order to
gain access to resources normally protected from an application or user.

Operating system-based points of attack can include:

No passcode – Many users choose not to set a passcode, or use a weak PIN,
passcode or pattern lock.

iOS jailbreaking – “Jailbreaking” is a term for removing the security mechanisms put
forth by the manufacturer and carrier that prevent unauthorized code from running on the
device. Once these restrictions are removed the device can become a gateway for
malware and other attacks.

Android rooting – Similar to jailbreaking, rooting allows Android users to alter or
replace system applications and settings, run specialized apps that require
administrator-level permissions. Like jailbreaking, it can result in the exposure of
sensitive data.

Passwords and data accessible – Devices such as Apple’s line of iOS devices, have
known vulnerabilities in their cryptographic mechanisms for storing encrypted passwords
and data. An attacker with knowledge of these vulnerabilities can decrypt the device’s
keychain, exposing user passwords, encryption keys, and other private data.

Carrier-loaded software – Software pre-installed on devices can contain security flaws.
Recently, some pre-loaded apps on Android handsets were found to contain security
vulnerabilities that could be used to wipe the handset, steal data, and even eavesdrop
on calls.

OS-based attacks

Secure Mobile Development Best Practices | NowSecure

10Mobile Security Primer

Zero-day exploits – Attacks often occur during the window between when a
vulnerability is first exploited and when software developers are able to issue a release
addressing the issue.

Network-based points of attack can include:

Wi-Fi (weak encryption/no encryption) – Applications failing to implement encryption,
when used across a Wi-Fi network run the risk of data being intercepted by a malicious
attacker eavesdropping on the wireless connection. Many applications utilize SSL/TLS,
which provides some level of protection; however some attacks against SSL/TLS have
also been proven to expose critical user data to an attacker.

Rogue access points – Involves physically installing an unauthorized wireless access
point that grants parties access to a secure network.

Packet sniffing – Allows a malicious intruder to capture and analyze network traffic,
which typically includes username and password information transmitted in clear text.

Man-in-the-Middle (MITM) – Involves eavesdropping on an existing network
connection, intruding into that connection, intercepting messages, and modifying select
data.

SLStrip – A form of the man-in-the-middle attack that exploits weakness in the SSL/TLS
implementation on Web sites, which can rely on the user verifying that an HTTPS
connection is present. The attack invisibly downgrades connections to HTTP, without
encryption, and is difficult for users to detect in mobile browsers.

Session hijacking – Involves exploitation of a session key to gain unauthorized access
to user and network information.

DNS poisoning – Exploiting network DNS can be used to direct users of a website to
another site of the attacker’s choosing. In some cases attacks can also inject content
through apps.

Fake SSL certificates – Another man-in-the-middle attack that involves issuing fake
SSL certificates that allow a malicious user to intercept traffic on a supposedly secure

THE NETWORK

Secure Mobile Development Best Practices | NowSecure

11Mobile Security Primer

HTTPS connection.

Attackers targeting the data center use two main points of entry:

Web server
Database

Web server-based attacks and vulnerabilities include:

Platform vulnerabilities – Vulnerabilities in the operating system, server software, or
application modules running on the web server can be exploited by an attacker.
Vulnerabilities can sometimes be uncovered by monitoring the communication between
a mobile device and the web server to find weaknesses in the protocol or access
controls.

Server misconfiguration – A poorly configured web server may allow unauthorized
access to resources that normally would be protected.

Cross-site scripting (XSS) – Cross-site scripting is an attack that involves injecting
malicious JavaScript code into a website. Pages that are vulnerable to this type of attack
return user input to the browser without properly sanitizing it. This attack is often used to
run code automatically when a user visits a page, taking control of a user’s browser.
After control of the browser has been established, the attacker can leverage that control
into a variety of attacks, such as content injection or malware propagation.

Cross-site Request Forgery (CSRF) – Cross-site request forgery involves an attacker
creating HTTP (Web) requests based on knowledge of how a particular web application
functions, and tricking a user or browser into submitting these requests. If a Web app is
vulnerable, the attack can execute transactions or submissions that appear to come from
the user. CSRF is normally used after an attacker has already gained control of a user’s
session, either through XSS, social engineering, or other methods.

Weak input validation – Many Web services overly trust the input coming from mobile
applications, relying on the application to validate data provided by the end user.

THE DATA CENTER

•
•

Web server-based attacks

Secure Mobile Development Best Practices | NowSecure

12Mobile Security Primer

However, attackers can forge their own communication to the web server or bypass the
application’s logic checks entirely, allowing them to take advantage of missing validation
logic on the server to perform unauthorized actions.

Brute-force attacks – A brute-force attack simply tries to guess the valid inputs to a
field, often using a high rate of attempts and dictionaries of possible values. The most
common usage of a brute-force attack is on authentication, but it can also be used to
discover other valid values in a Web app.

Database attacks and vulnerabilities include:

QL injection – Interfaces that don’t properly validate user input can result in SQL being
injected into an otherwise innocuous application query, causing the database to expose
or otherwise manipulate data that should normally be restricted from the user or
application.

OS command execution – Similar to SQL injection, certain database systems provide a
means of executing OS-level commands. An attacker can inject such commands into a
query, causing the database to execute these commands on the server, providing the
attacker with additional privileges, up to and including root level system access.

Privilege escalation – This occurs when an attack leverages some exploit to gain
greater access. On databases this can lead to theft of sensitive data. Data dumping – An
attacker causes the database to dump some or all data within a database, exposing
sensitive records.

Mobile applications typically fall under three operational categories:

Web** – Apps that operate via a general purpose web browser. Sometimes referred to
as WAP or Mobile Sites, these are the mobile equivalent to functional web applications
that have proliferated in the past decade offering many capabilities such as online
banking and shopping. Although regular web sites can be used in mobile web browsers,
many companies now create a separate mobile web app to optimize for mobile
attributes, such as smaller screen size, touch-based navigation and availability of GPS

Database attacks

TYPES OF MOBILE APPS

Secure Mobile Development Best Practices | NowSecure

13Mobile Security Primer

location.

Native – Installed apps that operate off the native mobile device operating system,
compiled for the specific mobile platform and leveraging its APIs. These are typically
(though not always) downloaded and installed via an app market.

Wrapper – Apps that operate by leveraging web pages inside a dedicated native
application wrapper, also sometimes referred to as “shell apps” or “hybrid apps.” While
appearing as a native app to the end user, the web-based functionality can result in
different vulnerabilities than are found in fully native coded apps.

Secure Mobile Development Best Practices | NowSecure

14Mobile Security Primer

Increase Code Complexity and Use Obfuscation
Avoid Simple Logic
Test Third-Party libraries
Implement Anti-tamper Techniques
Securely Store Sensitive Data in RAM
Understand Secure Deletion of Data
Avoid Query String for Sensitive Data

CODING PRACTICES
•
•
•
•
•
•
•

Secure Mobile Development Best Practices | NowSecure

15Coding Practices

Reverse engineering apps can provide valuable insight into how your app works. Making
your app more complex internally makes it more difficult for attackers to see how the app
operates, which can reduce the number of attack vectors.

Reverse engineering apps can provide valuable insight into how your app works. Making
your app more complex internally makes it more difficult for attackers to see how the app
operates, which can reduce the number of attack vectors.

Reverse engineering an Android app (.apk file) is achieved rather easily and the internal
workings of the application can then be examined. Obfuscate the code to make it more
difficult for a malicious user to examine the inner-workings of the app as described in the
Android developer reference article linked-to below.

iOS applications are also susceptible to reverse engineering attacks due to the way they
are designed. An app’s classes and protocols are stored within the object file, allowing
an attacker to fully map out the application’s design. Objective-C itself is a reflective
language, capable of perceiving and modifying its own state; an attacker with the right
tools can perceive and modify the state of an application in the same way that the
runtime manages the application. Objective-C incorporates a simplistic messaging
framework that is very easily traceable and can be manipulated to intercept or even
tamper with the runtime of an application. Relatively simple attacks can be used to
manipulate the Objective-C runtime to bypass authentication and policy checks, internal
application sanity checks, or the kind of logic checks that police the policies of an
application.

If the application handles highly sensitive data, consider implementing anti-debug
techniques. Various techniques exist which can increase the complexity of reverse

Increase Code Complexity and Use
Obfuscation

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

16Increase Code Complexity and Use Obfuscation

engineering your code. One technique is to use C/C++ to limit easy runtime manipulation
by the attacker. There are ample C and C++ libraries that are very mature and easy to
integrate with Objective-C, and Android offers JNI. On iOS consider writing critical
portions of code in low-level C to avoid exposure and manipulation by the Objective-C
runtime or Objective-C reverse engineering tools such as class-dump, class-dump-z,
Cycript or Frida.

Restricting debuggers – An application can specify using a specific system call to
prevent the operating system from permitting a debugger to attach to the process. By
preventing a debugger from attaching, an attacker's ability to interfere with the low-level
runtime is limited. An attacker must first circumvent the debugging restrictions in order to
attack the application on a low level. This adds further complexity to an attack. Android
applications should have 	android:debuggable=”false”	 set in the application manifest to
prevent easy runtime manipulation by an attacker or malware. On iOS you can make
use of the 	PT_DENY_ATTACH	.

Trace Checking – An application can determine whether or not it is currently being
traced by a debugger or other debugging tool. If it's being traced, the application can
perform any number of response actions such as, discarding encryption keys to protect
user data, notifying a server administrator, or other such responses in an attempt to
defend itself. This can be determined by checking the process status flags or using other
techniques like comparing the return value of 	ptrace	attach	, checking the parent
process, blacklisting debuggers in the process list or comparing timestamps on different
places of the program.

Optimizations - To hide advanced mathematical computations and other types of
complex logic, utilizing compiler optimizations can help obfuscate the object code so that
it cannot be easily disassembled by an attacker. This makes it more difficult for an
attacker to gain an understanding of the particular code. In Android this can be achieved
more easily by utilizing natively compiled libraries with the NDK. In addition, using an
LLVM Obfuscator or any protector SDK will provide better machine code obfuscation.

Stripping binaries – Stripping native binaries is an effective way of increasing the time
and skill required of an attacker in order to view the makeup of your application’s low
level functions. By stripping a binary, the symbol table of the binary is stripped so that an
attacker cannot easily debug or reverse engineer an application. Stripping binaries does
not discard the Objective-C class or object-mapping data on iOS. On Android you can
reuse techniques used on GNU/Linux systems like 	sstrip	ing or using UPX.

Secure Mobile Development Best Practices | NowSecure

17Increase Code Complexity and Use Obfuscation

The binaries in iOS applications distributed in the App Store are encrypted, adding
another layer of complexity. While tools exist to strip the FairPlay digital rights
management (DRM) encryption from these binaries, this layer of DRM increases the
amount of time and proficiency level required to attack the binary. The encryption used
in the App Store application can, however, be stripped by a skilled attacker. The attacker
achieves this by dumping the memory from which an application is loaded directly from a
device’s memory when it's run.

ObjC-Obfuscator https://github.com/FutureWorkshops/Objc-Obfuscator
iOS-Class-Guard https://github.com/Polidea/ios-class-guard
FairPlay DRM overview on iOS
https://www.theiphonewiki.com/wiki/Copy_Protection_Overview
Bugging Debuggers on iOS
https://www.theiphonewiki.com/wiki/Bugging_Debuggers
LLVM-Obfuscator https://github.com/obfuscator-llvm/obfuscator/wiki (for iOS and
Android)
http://developer.android.com/guide/publishing/licensing.html#app-obfuscation
Android - ProGuard: http://proguard.sourceforge.net/ -
http://developer.android.com/tools/help/proguard.html
Android - DexGuard: http://www.saikoa.com/dexguard

M8 - Security Decisions via Untrusted Inputs; M10 - Lack of Binary Protections
CWE-656: Reliance on Security Through Obscurity

REFERENCES
•
•
•

•

•

•
•

•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

18Increase Code Complexity and Use Obfuscation

http://developer.android.com/guide/publishing/licensing.html#app-obfuscation
http://proguard.sourceforge.net/
http://developer.android.com/tools/help/proguard.html
http://www.saikoa.com/dexguard
https://www.owasp.org/index.php/Mobile_Top_10_2014-M8
https://www.owasp.org/index.php/Mobile_Top_10_2014-M10
http://cwe.mitre.org/data/definitions/656.html

Simple logic tests in code are more susceptible to attack. Example:

if	sessionIsTrusted	==	1

This is a simple logic test and if an attacker can change that one value, they can
circumvent the security controls. Apple iOS has been attacked using this type of
weakness and Android apps have had their Dalvik binaries patched to circumvent
various protection mechanisms. These logic tests are easy to circumvent on many
levels. On an assembly level, an attacker can attack an iOS application using only a
debugger to find the right CBZ (compare-and-branch-on-zero) or CBNZ (compare-and-
branch-on-nonzero) instruction and reverse it. This can be performed in the runtime as
well by simply traversing the object’s memory address and changing its instance variable
as the application runs. On Android, the application can be decompiled to SMALI and
the branch condition patched before recompiling.

Consider a better programming paradigm, where privileges are enforced by the server
when the session is not trusted, or by preventing certain data from being decrypted or
otherwise available until the application can determine that the session is trusted using
challenge/response, OTP, or other forms of authentication. In addition, it is
recommended to declare all sanity check functions static inline. With this approach they
are compiled inline, making it more difficult to patch out (i.e. an attacker cannot simply
override a function or patch one function). This technique would require the attacker to
seek out and patch every instance of the check from the application, increasing the
required complexity of an attack. For highly sensitive apps, more sophisticated
approaches founded in secure coding principles may be worth further investigation.
Integrating techniques such as encryption, timed callbacks and flow-based programming
can add complexity for an attacker.

Avoid Simple Logic

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

19Avoid Simple Logic

In the same vein, simple logic variables stored in an object can be easily manipulated by
an attacker. Example:

session.trusted	=	TRUE

Such values can be both read and written to by an attacker within the instance of a class
currently in use by the application. On iOS by manipulating the Objective-C runtime,
these variables can be manipulated so that the next time they are referenced by the
application, any manipulated values will be read instead.

M8 - Security Decisions via Untrusted Inputs; M10 - Lack of Binary Protections
CWE 200

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

20Avoid Simple Logic

https://www.owasp.org/index.php/Mobile_Top_10_2014-M8
https://www.owasp.org/index.php/Mobile_Top_10_2014-M10
http://cwe.mitre.org/data/definitions/200.html

Developers rely heavily on third-party libraries. It is important to thoroughly probe and
test this as you test your code. Third-party libraries can contain vulnerabilities and
weaknesses. Many developers assume third-party libraries are well-developed and
tested, however, issues can and do exist in their code.

Security auditing must thoroughly test third-party libraries and functionality as well. This
should include core iOS and Android code/libraries. Upgrading to a new version of a
third-party library (or OS version) should be treated as version of your app. An updated
third-party library (or new OS version) can contain new vulnerabilities or expose issues
in your code. They should be tested just like you test new code for your app. On iOS,
statically compile third-party libraries to avoid LD_PRELOAD attacks; in such attacks a
library and its functions can be swapped out for an attacker’s library with functions
replaced with malicious code.

M8 - Security Decisions via Untrusted Inputs
CWE 829

Test Third-Party Libraries

DETAILS

REMEDIATION

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

21Test Third-Party libraries

https://www.owasp.org/index.php/Mobile_Top_10_2014-M8
http://cwe.mitre.org/data/definitions/829.html

Attackers can tamper with or install a backdoor on an app, re-sign it and publish the
malicious version to third-party app marketplaces. Such attacks typically target popular
apps and financial apps.

Employ anti-tamper and tamper-detection techniques to prevent illegitimate applications
from executing.

Use checksums, digital signatures and other validation mechanisms to help detect file
tampering. When an attacker attempts to manipulate the application, the correct
checksum would not be preserved and this could detect and prevent illegitimate
execution. Note that such techniques are not foolproof and can be bypassed by a
sufficiently motivated attacker. Checksum, digital signature and other validation
techniques increase the amount of time and effort an attacker must spend to
successfully breach the application. An application can silently wipe its user data, keys,
or other important data wherever tampering is detected to further challenge an attacker.
Applications that have detected tampering can also notify an administrator.

On Android, the public key used to sign an app can be read from the app’s certificate
and used to verify the application was signed with the developer’s private key. Using the
PackageManager class, it’s possible to retrieve the signatures of our application and
then compare them with the correct value. If someone has tampered with or re-signed
the application, the comparison will fail resulting in the detection of tampering with the
application.

Android - https://gist.github.com/scottyab/b849701972d57cf9562e

Implement Anti-tamper Techniques

DETAILS

REMEDIATION

REFERENCES
•

Secure Mobile Development Best Practices | NowSecure

22Implement Anti-tamper Techniques

https://gist.github.com/scottyab/b849701972d57cf9562e

M10 - Lack of Binary Protections
CWE-354: Improper Validation of Integrity Check Value

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

23Implement Anti-tamper Techniques

https://www.owasp.org/index.php/Mobile_Top_10_2014-M10
http://cwe.mitre.org/data/definitions/354.html

Oftentimes, iOS developers will store application settings in plist files which can be
compromised in some situations.

When an application is in use, user- or application-specific data may be stored in RAM
and not properly cleared when the user logs out or the session times out. Because
Android stores an application in memory (even after use) until the memory is reclaimed,
encryption keys may remain in memory. An attacker who finds or steals the device can
attach a debugger and dump the memory from the application, or load a kernel module
to dump the entire contents of RAM.

When managing passwords and other sensitive information, applications will keep that
information in memory, even if the buffer is freed for some time. This can be a security
problem if the application is prone to buffer overflow, format string, data leak and other
vulnerabilities, which might allow an attacker to dump the memory of the process in
order to recover that sensitive information.

Do not keep sensitive data (e.g., encryption keys) in RAM longer than required. Nullify
any variables that hold keys after use. Avoid using immutable objects for sensitive keys
or passwords such as in Android 	java.lang.String	 and use char array instead. Even if
references to immutable objects are removed or nulled, they may remain in memory until
garbage collection occurs (which cannot be forced by the app).

This can be only done by low-level languages because the compilers and just-in-time
virtual machines will ignore those operations for performance reasons if the optimization
routines detect that the buffer is no longer used after being overwritten.

There are some recommendations in order to clear those buffers bypassing the compiler
optimizations, but they are all toolchain, language and platform dependant.

Securely Store Sensitive Data in RAM

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

24Securely Store Sensitive Data in RAM

M4 - Unintended Data Leakage
CWE-316: Cleartext Storage of Sensitive Information in Memory
CWE-200: Information Exposure
CVE-2014-0160 Heartbleed

CWE/OWASP
•
•
•
•

Secure Mobile Development Best Practices | NowSecure

25Securely Store Sensitive Data in RAM

https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/316.html
http://cwe.mitre.org/data/definitions/200.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

On Android, calling file.delete() will not securely erase the target file, and as long as it is
not overwritten it can be carved from a physical image of the device. Traditional
approaches to wipe a file generally do not work on mobile devices due to the aggressive
management of the NAND Flash memory.

Operate under the assumption that any data written to a device can be recovered. In
some instances, encryption might add an additional layer of protection.

The following is not recommended for most applications, but it may be possible to delete
a file and overwrite all available space with a large file (which would force the NAND
Flash to erase all unallocated space). Drawbacks of this technique include wearing out
the NAND Flash, causing the app and the entire device to respond slowly, and
significant power consumption.

Wherever possible, avoid storing sensitive data on the device. See [BPXX Avoid storing
sensitive data].

Encrypting the sensitive data stored in files, rewriting the contents of the file and syncing
before deleting can help, but as described above, they're not fully reliable solutions to
the problem.

General Purpose Cypto

Understand Secure Deletion of Data

DETAILS

REMEDIATION

REFERENCES
•

CWE/OWASP

Secure Mobile Development Best Practices | NowSecure

26Understand Secure Deletion of Data

https://developer.apple.com/library/mac/documentation/security/conceptual/cryptoservices/GeneralPurposeCrypto/GeneralPurposeCrypto.html

M4 - Unintended Data Leakage
CWE-312: Cleartext Storage of Sensitive Information
CWE-313: Cleartext Storage in a File or on Disk

•
•
•

Secure Mobile Development Best Practices | NowSecure

27Understand Secure Deletion of Data

https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/313.html

A major bank breach was executed with a simple query string modification “attack.”
Query string parameters are more visible and can often be unexpectedly cached (web
history, webserver or proxy logs, etc.) Using an unencrypted query string for meaningful
data should be avoided. If credentials are transmitted as query string parameters, as
opposed to in the body of a POST request, then these are liable to be logged in various
places — for example, within the user’s browser history, within the web server logs, and
within the logs of any reverse proxies employed within the hosting infrastructure. If an
attacker succeeds in compromising any of these resources, then she may be able to
escalate privileges by capturing the user credentials stored there.

Use secure POST to send user data, with XSRF token protection. POST data is not
logged by default in areas where query string data can be found. Whether POST or
GET, temporary session cookies should be used. Encrypting data using a non-zero
initialization vector and temporary session keys can also help prevent a replay attack. If
necessary, query string data can be encrypted using a temporary session key negotiated
between hosts using secure algorithms, such as Diffie-Hellman.

Pinto, Marcus (2007). The Web Application Hacker’s Handbook: Discovering and
Exploiting Security Flaws (Kindle Locations 2813-2816). Wiley. Kindle Edition.

M2 - Insecure Data Storage, M4 - Unintended Data Leakage
CWE 598

Avoid Query String for Sensitive Data

DETAILS

REMEDIATION

REFERENCES

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

28Avoid Query String for Sensitive Data

https://www.owasp.org/index.php/Mobile_Top_10_2014-M2
https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/316.html

Implement Secure Data Storage
Use SECURE Setting For Cookies
Fully validate SSL/TLS
Protect Against SSL Strip
Limit Use of UUID
Treat Geolocation Data Carefully
Institute Local Session Timeout
Implement Enhanced/Two-Factor Authentication
Protect Application Settings
Hide Account Numbers and Use Tokens
Implement Secure Network Transmission Of Sensitive Data
Validate Input From Client
Avoid Storing App Data in Backups

HANDLING SENSITIVE DATA
•
•
•
•
•
•
•
•
•
•
•
•
•

Secure Mobile Development Best Practices | NowSecure

29Handling Sensitive Data

Storing data securely on a mobile device requires proper technique. Whenever possible,
simply do not store/cache data. This is the most sure way to avoid data compromise
on the device.

Do not store sensitive data where possible. Options to reduce the storage of user
information include:

Transmit and display but do not persist to memory. This requires special attention
as well, to ensure that an analog leak does not present itself where screenshots of
the data are written to disk.
Store only in RAM (clear at application close).

If storing sensitive data on the device is an application requirement, you should add an
additional layer of verified, third-party encryption (e.g., SQLCipher) to the data as device
encryption is not sufficient.

By adding another layer of encryption, you have more control over the implementation
and attacks focused on the main OS encryption classes. For example, attacks on iOS
data-protection classes (which are now compromised) will not succeed in compromising
your application directly. This approach has the drawback of being more complex and, if
implemented poorly, can actually reduce security posture. If you are not confident in
including a verified third-party crypto library Apple and Android’s common cryptographic
libraries provide a number of standard cryptographic functions which, if used properly,
can provide a reasonably secure cryptography implementation.

Some options include:

Implement Secure Data Storage

DETAILS

REMEDIATION

•

•

Additional Layered Encryption

Secure Mobile Development Best Practices | NowSecure

30Implement Secure Data Storage

https://www.zetetic.net/sqlcipher/

Encrypting sensitive values in an SQLite database using SQLCipher, which
encrypts the entire database using a PRAGMA key
The PRAGMA key can be generated at runtime when the user initially installs the
app or launches it for the first time
Generate a unique PRAGMA key for each user and device
The source for key generation should have sufficient entropy (i.e., avoid generating
key material from easily predictable data such as username)

Whenever you encrypt user data, aim to encrypt it using a randomly generated master
key, which is also encrypted using a passphrase supplied by the user whenever data is
accessed. This will prevent data from being easily recovered should an attacker extract
the master key from the device. Due to the number of vulnerabilities in Apple’s data-
protection APIs and keychain and the lack of device encryption on the majority of
Android handsets, it is not recommended that the master key or a passphrase be stored
on the device at all.

In Android remember that the external storage such as SD Card has no fine grained
permissions and that any app by default has read access to the storage and can read all
files. Since Android 4.4 apps can store data on the SD Card in a protected way under
certain circumstances (see http://source.android.com/devices/tech/storage/).

Android and iOS implement standard crypto libraries such as AES that can be used to
secure data. Remember that data encrypted with this method is only as secure as the
password used to derive the key and key management. Consider the password policy,
length and complexity versus user convenience, and how the encryption key is stored in
memory. With root access it is possible to dump the memory of a running process and
search it for encryption keys.

Also note that using the standard cryptographic provider “AES” will often default to the
less secure AES-ECB. Best practice is to specify AES-CBC or AES-GCM with a 256-bit
key and a random IV generated by SecureRandom. You should also derive the key from
a passphrase using the well tested PBKDF2 (Password-Based Key Derivation Function).

The Data Protection APIs built into iOS, combined with a complex passphrase, can

•

•

•
•

Android

iOS

Secure Mobile Development Best Practices | NowSecure

31Implement Secure Data Storage

https://www.zetetic.net/sqlcipher/sqlcipher-api/#key
http://source.android.com/devices/tech/storage/

provide an additional layer of data protection, but are not as secure as implementing
additional, third-party verified cryptography. To leverage this, files must be specifically
marked for protection (see best practice 6.1 Use the Keychain Carefully). Any data not
specifically encrypted using Apple’s data protection APIs is stored unencrypted.

Android/iOS Full Database Encryption - http://sqlcipher.net/
Android Storage Options - http://developer.android.com/guide/topics/data/data-
storage.html

OWASP Mobile Top 10: M2 - Insecure Data Storage
CWE: CWE-312 - Cleartext Storage of Sensitive Information, CWE-313 - Cleartext
Storage in a File or on Disk, CWE-522 - Insufficiently Protected Credentials, CWE-
215 - Information Exposure Through Debug Information

REFERENCES
•
•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

32Implement Secure Data Storage

http://sqlcipher.net/
http://sqlcipher.net/
http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/data/data-storage.html
https://www.owasp.org/index.php/Mobile_Top_10_2014-M2
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/313.html
http://cwe.mitre.org/data/definitions/522.html
http://cwe.mitre.org/data/definitions/215.html

If a cookie is not marked as “Secure,” it may be transmitted over an insecure connection
whether or not the session with the host is secure. In other words, it may be be
transmitted over an HTTP connection.

In addition, setting the "HTTPOnly" flag on a cookie prevents attacks such as cross-site
scripting (XSS), because the cookie cannot be accessed via the client side (e.g., cannot
be accessed using a snippet of JavaScript code).

The Set-Cookie headers should use the “Secure” and “HTTPOnly” settings. These
settings should be applied to all cookies for native and/or web apps.

OWASP Mobile Top 10: M9 - Improper Session Handling
CWE CWE-614 - Sensitive Cookie in HTTPS Session Without 'Secure' Attribute

Use SECURE Setting For Cookies

DETAILS

REMEDIATION

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

33Use SECURE Setting For Cookies

https://www.owasp.org/index.php/Mobile_Top_10_2014-M9
http://cwe.mitre.org/data/definitions/79.html

Many apps do not properly validate SSL/TLS certificates, leaving them vulnerable to
man-in-the-middle (MITM) attacks. If an app fails to properly validate its connection to
the server, the app is susceptible to an MITM attack by a privileged network attacker.
This type of attack gives the culprit the ability to capture, view, and modify traffic sent
and received between the app and the server.

An application not properly validating its connection to the server is susceptible to a
man-in-the-middle attack by a priviledged network attacker. This means that an attacker
would be able to capture, view, and modify traffic sent and received between the
application and the server.

Developers may disable certificate validation in apps for a variety of reasons. One
example is when a developer needs to test code on the production server, but does not
have a domain certificate for the test environment. In this situation, the developer may
add code to the networking library to accept all certificates as valid. Accepting all
certificates as valid, however, allows an attacker to execute an MITM attack on the app
by simply using a self-signed certificate. This approach to developing an app nullifies the
effect of SSL/TLS and provides no value over an unencrypted, plaintext connection
(other than requiring an active MITM attack to view and modify traffic whereas a plaintext
connection can be monitored passively).

Below is an example of vulnerable Android code that accepts all SSL/TLS certificates as
valid:

				TrustManager[]	trustAllCerts	=	new	TrustManager[]	{
							new	X509TrustManager()	{
										public	java.security.cert.X509Certificate[]	getAcceptedIssuers()	{
												return	null;
										}
										public	void	checkClientTrusted(X509Certificate[]	certs,	String	authType)	{		}

Fully Validate SSL/TLS

DETAILS

Common Mistake: Accepting self-signed certificates

Secure Mobile Development Best Practices | NowSecure

34Fully validate SSL/TLS

										public	void	checkServerTrusted(X509Certificate[]	certs,	String	authType)	{		}

							}
				};

				//Globally	set	the	broken	TrustManager
				SSLContext	sc	=	SSLContext.getInstance("SSL");
				sc.init(null,	trustAllCerts,	new	java.security.SecureRandom());
				HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

				//Make	the	connection	to	the	server
				URL	url	=	new	URL("https://paypal.com");
				HttpsURLConnection	urlConnection	=	(HttpsURLConnection)	url.openConnection();
				InputStream	ins	=	urlConnection.getInputStream();
				InputStreamReader	isr	=	new	InputStreamReader(ins);
				BufferedReader	in	=	new	BufferedReader(isr);

				String	inputLine;
				in.close();

Another common developer mistake in the implementation of SSL/TLS is setting a
permissive hostname verifier. In this case, the app won’t accept self-signed certificates
because the certificate is still validated. But if an app “allows all hostnames,” a certificate
issued by any valid certificate authority (CA) for any domain name can be used to
execute an MITM attack and sign traffic.

Below is an example of vulnerable Android code that sets a permissive hostname
verifier:

				URL	url	=	new	URL("https://paypal.com");
				HttpsURLConnection	urlConnection	=	(HttpsURLConnection)	url.openConnection();
				urlConnection.setHostnameVerifier(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);
				InputStream	ins	=	urlConnection.getInputStream();
				InputStreamReader	isr	=	new	InputStreamReader(ins);
				BufferedReader	in	=	new	BufferedReader(isr);

				String	inputLine;
				in.close();

Common Mistake: Setting a permissive hostname
verifier

Secure Mobile Development Best Practices | NowSecure

35Fully validate SSL/TLS

For any app that handles highly sensitive data, use certificate pinning to protect against
MITM attacks. The majority of apps have defined locations to which they connect (their
backend servers) and inherently trust the infrastructure to which they connect, therefore
it’s acceptable (and often more secure) to use a “private” public-key infrastructure,
separate from public certificate authorities. With this approach, an attacker needs the
private keys from the server side to perform a MITM attack against a device for which
they do not have physical access. If certificate pinning cannot be implemented for any
app functionality that handles highly sensitive data, implement proper certificate
validation, which consists of two parts:

For Android

Pinning certificates to a default Apache HTTP client shipped with Android consists of
obtaining a certificate for the desired host, transforming the cert in .bks format, then
pinning the cert to an instance of 	DefaultHttpClient	. BKS keystores are usually included
within the assets/raw directory of the app’s APK file.

The following sample code demonstrates how a BKS keystore can be loaded:

` InputStream in = resources.openRawResource(certificateRawResource);

keyStore	=	KeyStore.getInstance("BKS");
keyStore.load(resourceStream,	password);`

The constructed httpClient instance can be configured to only allow requests to host that

REMEDIATION

General guidance

Certificate validation: Certificates presented to the app must be fully validated by
the app and be signed by a trusted root CA.

1.

Hostname validation: The app must check and verify that the hostname (Common
Name or CN) extracted from the certificate matches that of the host with which the
app intends to communicate.

2.

For Android

Secure Mobile Development Best Practices | NowSecure

36Fully validate SSL/TLS

present certificates that have been signed with certificates stored inside the application.

The following sample code illustrates this approach: ` HttpParams httpParams = new
BasicHttpParams();

SchemeRegistry	schemeRegistry	=	new	SchemeRegistry();
schemeRegistry.register(new	Scheme("https",	new	SSLSocketFactory(keyStore),	443));

ThreadSafeClientConnManager	clientMan	=	new	ThreadSafeClientConnManager(httpParams,	schemeRegistry);

httpClient	=	new	DefaultHttpClient(clientMan,	httpParams);`

For more information on implementing certificate pinning in Android, refer to the OWASP
Certificate and Public Key Pinning guide -
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#Android.

One option is to use 	NSURLSession	 or 	AFNetworking	 classes to achieve certificate pinning
in iOS. Additional details on this implementation can be found in the technical note
“HTTPS Server Trust Evaluation” at
https://developer.apple.com/library/ios/technotes/tn2232/_index.html.

Your app shouldn’t suffer SSL’s problems - https://moxie.org/blog/authenticity-is-
broken-in-ssl-but-your-app-ha/

OWASP Mobile Top 10: M3- Insufficient Transport Layer Protection
CWE: CWE-319 - Cleartext Transmission of Sensitive Information

For iOS

REFERENCES
•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

37Fully validate SSL/TLS

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#Android
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#Android
https://developer.apple.com/library/ios/technotes/tn2232/_index.html
https://developer.apple.com/library/ios/technotes/tn2232/_index.html
https://moxie.org/blog/authenticity-is-broken-in-ssl-but-your-app-ha/
https://moxie.org/blog/authenticity-is-broken-in-ssl-but-your-app-ha/
https://www.owasp.org/index.php/Mobile_Top_10_2014-M3
http://cwe.mitre.org/data/definitions/319.html

Using this form of a man-in-the-middle attack, an attacker can bypass SSL/TLS by
transparently hijacking HTTP traffic on a network, monitoring for HTTPS requests, and
then eliminating SSL/TLS, which creates an unsecured connection between the client
and server. This attack can be particularly difficult to prevent on mobile web apps
(mobile web apps are essentially webpages made to look like an app).

Serve all traffic, even non-sensitive traffic,over TLS. This prevents any possible
downgrading/stripping attacks because an attacker needs an initial plaintext “entry point”
to accomplish said attack.

Validate that SSL/TLS is active. Validating SSL/TLS is relatively straight-forward in fully
native apps. Mobile web apps can validate SSL/TLS through JavaScript so that if an
HTTPS connection is not detected, the client redirects to HTTPS. A more reliable means
to require SSL/TLS is the HTTP Strict Transport Security (HSTS) header. The HSTS
header forces all subsequent connections to that domain to use TLS and the original
certificate. Browsers are only starting to implement the HSTS header and mobile
browser support lags behind.

Avoid using icons or language within the app that assures users of a secure connection
when said connection does not depend on a validated HTTPS session. User education
is an important component in reducing the risk of SSL/TLS downgrade attacks. Use
alerts and text within the app to reinforce to users the importance of protecting network
traffic using HTTPS.

Another mitigation recently put in place within both Android and iOS is to treat non-
TLS/plaintext traffic as a developer error. Android recently added
	android:usesCleartextTraffic	 (Android M and the War on Cleartext Traffic -

Protect Against SSL Downgrade
Attacks

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

38Protect Against SSL Downgrade Attacks

https://koz.io/android-m-and-the-war-on-cleartext-traffic/

https://koz.io/android-m-and-the-war-on-cleartext-traffic/), and iOS 9 and above require
that you manually add exceptions for plaintext traffic. Replacement web protocol HTTP/2
is another future mitigation because it uses only TLS (and includes other features).

Moxie Marlinspike’s sslstrip exploitation tool - https://moxie.org/software/sslstrip/

OWASP Mobile Top 10: M3- Insufficient Transport Layer Protection
CWE: CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm
Downgrade')

REFERENCES
•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

39Protect Against SSL Downgrade Attacks

https://koz.io/android-m-and-the-war-on-cleartext-traffic/
https://moxie.org/software/sslstrip/
https://moxie.org/software/sslstrip/
https://www.owasp.org/index.php/Mobile_Top_10_2014-M3
http://cwe.mitre.org/data/definitions/757.html

Most mobile devices have a unique ID, also called a Universal Unique Identifier (UUID),
assigned at the time of manufacture for identification purposes. For example, iOS
devices are assigned what's called a Unique Device Identifier (UDID). The ability to
uniquely identify a device is often important to procure, manage and secure data.
Developers quickly adopted the UUID and UDID for device identification, which resulted
in it becoming a foundation of security for many systems.

Unfortunately, this approach brings with it several privacy and security issues. First,
many online systems have connected the UUID of a device to an individual user to
enable tracking across applications even when the user is not logged in to the app. This
advanced ability to track a user has become a major privacy concern.

Beyond that, apps which identify a person through the UUID risk exposing the data of a
device's previous owner to a new owner. In one instance, after re-setting an iPhone, we
gained access to the prior user's account for an online music service even though all
user data had been erased. Not only is this a privacy issue, it's asecurity threat because
an attacker could fake a UUID.

Apple has recognized both the privacy and security risks of iOS's UDID and removed
developer access to it. With the UDID out of reach, some developers apply other device-
identification methods involving the MAC address of the wireless network interface or
OpenUDID. These methods have now been banned at the system/API level and are also
flagged and rejected as part of the AppStore review process.

We recommend that developers avoid using any device-provided identifier to identify the
device, especially if it's integral to an implementation of device authentication. Instead,
we recommend the creation of an app-unique "device factor" at the time of registration,
installation, or first execution. This app-unique device factor in combination with user
authentication can then be required to create a session. The device factor could also be

Limit Use of UUID

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

40Limit Use of UUID

used as an additional factor in an encryption routine.

Since it is not relying on predictable, device-supplied data, exploitation becomes more
difficult. By leveraging a challenge-response approach, the server and device can
authenticate each other prior to user authentication. To gain system access an attacker
would have to exploit both factors. Developers can also implement a feature where the
device factor is reset on the client or server side, forcing a more stringent re-
authentication of the user and device.

To protect user privacy while preserving advertising capabilities, Apple recommends
using the advertisingIdentifier - a unique identifier shared across all apps in the system.
A person can reset the advertisingIdentifier on their device at any time in the Settings ->
Privacy -> Advertising menu.

Unique Identifiers in iOS

M5 - Poor Authorization and Authentication
CWE-200: Information Exposure

REFERENCES
•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

41Limit Use of UUID

https://possiblemobile.com/2013/04/unique-identifiers/
https://www.owasp.org/index.php/Mobile_Top_10_2014-M5
http://cwe.mitre.org/data/definitions/200.html

Android and iOS can use GPS to accurately determine location. Mishandling this GPS
data is a privacy concern and may make the user vulnerable to other attacks if the
attacker knows their current or past locations. Information about local bluetooth and/or
NFC/RFID tags may also leak geolocation information.

Also, applications with access to gallery pictures can also be grabbing the GPS position
stored in them (if any), by checking timestamps and assuming the user took the picture
can be a privacy issue for the user.

Consider implications of using and avoid storing GPS data. For better privacy use the
most coarse-grained location services, if possible. Unless required, do not log or store
GPS information. While it may be useful to use GPS for certain applications, it is rarely
necessary to log and store the data. Avoiding this prevents many privacy and security
issues. GPS positioning information is often cached for a time within the locationd
caches on iOS and various caches on Android. Some applications use GPS
automatically. One example is the Camera which often geo-tags images. If this is a
concern, make sure to strip the EXIF data from the image.

When working in secure locations, remember that GPS data may be reported back to
Apple and Google servers to increase accuracy. Both Android and iOS devices are
capable of capturing information about nearby access points in range, regardless of
whether the device is connected to them. Do not activate GPS in applications that will
run at or near secure locations, whose coordinates or wireless network topology should
not be reported back to vendors. In addition to this, knowledge of a single access point’s
hardware address could be used by an attacker to simulate the secure wireless
environment and return GPS coordinates of the environment from Apple or Google.

Treat Geolocation Data Carefully

DETAILS

REMEDIATION

REFERENCES

Secure Mobile Development Best Practices | NowSecure

42Treat Geolocation Data Carefully

http://www.sans.org/reading-room/whitepapers/forensics/forensic-analysis-ios-
devices-34092

M4 - Unintended Data Leakage
CWE 200

•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

43Treat Geolocation Data Carefully

http://www.sans.org/reading-room/whitepapers/forensics/forensic-analysis-ios-devices-34092
https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/200.html

Mobile devices are frequently lost or stolen, and an attacker can take advantage of an
active session to access sensitive data, execute transactions, or perform
reconnaissance on a device owner’s accounts. In addition, without a proper session
timeout, an app may be susceptible to data interception via a man-in-the-middle attack.

Any time the app is not used for more than 5 minutes, terminate the active session,
redirect the user to the log-in screen, ensure that no app data is visible, and require the
user to re-enter log-in credentials to access the app.

After timeout, also discard and clear all memory associated with user data including any
master keys use to decrypt that date (see also best practice 2.5 Securely Store Sensitive
Data in RAM)

Also, make sure the session timeout occurs on both the client side and the server side to
mitigate against an attacker modifying the local timeout mechanism.

OWASP Mobile Top 10: M9 - Improper Session Handling
CWE: CWE-613 - Insufficient Session Expiration

Institute Local Session Timeout

DETAILS

REMEDIATION

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

44Institute Local Session Timeout

https://www.owasp.org/index.php/Mobile_Top_10_2014-M9
http://cwe.mitre.org/data/definitions/613.html

Weak or non-existent authentication can grant an attacker unauthorized access to an
app.

A password should not be simplistic. It’s best to require, if not at least support, complex
passwords, including length of at least six alphanumeric characters (more characters is
always stronger). Requiring the selection of a secret word or icon (which the user does
not create themselves) as part of the log-in process can help protect users' accounts in
the event they re-use passwords and their password was exposed as part of another
data compromise.

In some cases, a username and password does not provide sufficient security for a
mobile app. When sensitive data or transactions are involved, implement two-factor
authentication. This may not be feasible every time a user logs in but can be used at
intervals or when accessing selected functions. Consider step-up authentication
methods to provide normal access to non-transactional areas but require a second layer
of authentication for sensitive functions.

Options for enhanced authentication include:

Additional secret word/icon
Additional code provided by SMS or email -- but beware that an attacker will likely
have access to both on a stolen device
Password plus additional user-known value, for example user-selected personal
factor
Security questions and answers, selected by the user in advance (e.g. during
registration)

Implement Enhanced / Two-Factor
Authentication

DETAILS

REMEDIATION

•
•

•

•

Secure Mobile Development Best Practices | NowSecure

45Implement Enhanced/Two-Factor Authentication

For the highest level of security, use one-time passwords that require the user to not
only possess the correct credentials, but also a physical token including the one time
password.

OWASP Mobile Top 10: M5 - Poor Authorization and Authentication
CWE: CWE-308: Use of Single-factor Authentication

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

46Implement Enhanced/Two-Factor Authentication

https://www.owasp.org/index.php/Mobile_Top_10_2014-M5
http://cwe.mitre.org/data/definitions/308.html

iOS developers often store application settings in plist files which can be compromised in
some situations. Similarly, Android developers often store settings in a shared
preferences XML file or SQLite databases, which are not encrypted by default and can
be read or even modified with root permissions, or using backup procedures.

Compile settings into the code when possible. There is little benefit to configuring an app
via plist file on iOS since changes must be bundled and deployed as a new app anyway.
Instead, include configuration inside app code which requires more time and skill for
attackers to modify. Don’t store any critical settings in dictionaries or other files unless
encrypted first. Ideally, encrypt all configuration files using a master key encrypted with a
passphrase that is supplied by the user, or with a key provided remotely when a user
logs into a system.

M2 - Insecure Data Storage, M4 - Unintended Data Leakage
CWE 312, 313

Protect Application Settings

DETAILS

REMEDIATION

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

47Protect Application Settings

https://www.owasp.org/index.php/Mobile_Top_10_2014-M2
https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/313.html

Many apps store complete account numbers in various screens.

Given the widespread use of mobile apps in public places, displaying partial numbers
(e.g. *9881) can help ensure maximum privacy for this information. Unless there is a
need to store the complete number on the device, store the partially hidden numbers.
Often, account numbers are used to reference server-side account data; this data can
easily be stolen from memory, or in some cases manipulated to work with accounts that
the user should not have permission to access. It is recommended that instead of
account numbers, tokens be assigned to each account and provided to the client. These
tokens, which should not be deducible by the user, have server-side mapping to an
actual account. Should the application data be stolen, the user’s account numbers will
not be exposed, and an attacker will also not be able to reference account numbers
directly, but must first determine the token that maps back to the account.

In iOS, if you realize

>	-	(BOOL)textField:(UITextField	*)textField	

>	shouldChangeCharactersInRange:(NSRange)range	replacementString:(NSString	*)string

as part of the delegate for the text field, you can change the visibility of the entered text.

Hide Account Numbers and Use
Tokens

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

48Hide Account Numbers and Use Tokens

Unlike web browsers, mobile devices typically do not disclose whether or not an app
uses SSL/TLS to secure the transmission of data, and so app users simply have to trust
that the app’s developer has implemented network encryption.

For many years SSL (followed by TLS) has been the standard for encryption of web
communications, including the web services that power mobile apps. However breaches
of certifying authorities like DigiNotar and Comodo exposed many users to bogus
certificates. The Apple “goto fail” bug further exposed the limits of SSL/TLS’s reliability
for app developers.

Today, best practices call for app providers to use SSL/TLS effectively to secure the
transmission of passwords, login IDs, and other sensitive data over the network, and
even go further and leverage app-layer encryption to protect user data.

Use SSL/TLS either with standard trust validation, or, for increased security, implement
certificate pinning (see also best practice 3.3 Fully Validate SSL/TLS and the OWASP
“Pinning Cheat Sheet”).

To prevent the interception of highly sensitive values (e.g., login IDs, passwords, PINs,
account numbers, etc.) via a compromised SSL/TLS connection, implement additional
encryption in transit. Encrypt highly sensitive values with AES (also known as Rijndael)
using a key size of 256. For hashing purposes, use an algorithm such as SHA-256 or
higher.

On the server side, consider accepting only strong TLS ciphers and keys and disabling
lower levels of encryption such as export-grade 40-bit encryption (see also best practice
8.2 Properly Configure Server-Side SSL)

Implement Secure Network
Transmission Of Sensitive Data

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

49Implement Secure Network Transmission Of Sensitive Data

https://avandeursen.com/2014/02/22/gotofail-security/
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

OWASP Mobile Top 10: M3- Insufficient Transport Layer Protection
CWE: CWE-311 - Missing Encryption of Sensitive Data, CWE-319 - Cleartext
Transmission of Sensitive Information

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

50Implement Secure Network Transmission Of Sensitive Data

https://www.owasp.org/index.php/Mobile_Top_10_2014-M3
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/319.html

Even if data is is generated from your app, it is possible for this data to have been
intercepted and manipulated. This could include attacks that cause the app to crash
(generating a key crash log), buffer overflows, SQL Injection, and other attacks. This can
easily be enforced in iOS by realizing the methods in the UITextFieldDelegate and taking
advantage of the recommendations above.

As with proper web application security, all input from the client should be must be
treated as untrusted. Services must thoroughly filter and validate input from the app and
user. Proper sanitization includes all user input before transmitting and during receipt.

iOS
https://developer.apple.com/library/ios/documentation/uikit/reference/UITextFieldDel
egate_Protocol/UITextFieldDelegate/UITextFieldDelegate.html
Android - Content Provider Injection Case of Study -
https://viaforensics.com/mobile-security/ebay-android-content-provider-injection-
vulnerability.html

M8 - Security Decisions via Untrusted Inputs
CWE 79, 89, 120

Validate Input From Client

DETAILS

REMEDIATION

REFERENCES
•

•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

51Validate Input From Client

https://developer.apple.com/library/ios/documentation/uikit/reference/UITextFieldDelegate_Protocol/UITextFieldDelegate/UITextFieldDelegate.html
https://viaforensics.com/mobile-security/ebay-android-content-provider-injection-vulnerability.html
https://www.owasp.org/index.php/Mobile_Top_10_2014-M8
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/120.html

Performing a backup of the data on an Android or iOS device can potentially also back-
up sensitive information stored within an app’s private directory.

By default, the 	allowBackup	 flag within an Android app’s Manifest file is set as 	true	.
This results in an Android backup file (backup.ab) including all of subdirectories and files
contained within an app’s private directory on the device’s file system. Therefore,
explicitly declare the 	allowBackup	 flag as 	false	.

In performing an iTunes backup of a device on which a particular app has been installed,
the backup will include all subdirectories (except the “Caches” subdirectory) and files
contained within that app’s private directory on the device’s file system. Therefore, avoid
storing any sensitive data in plaintext within any of the files or folders within the app’s
private directory or subdirectories (see also best practice 3.1 Implement Secure Data
Storage.

OWASP Mobile Top 10: M2 - Insecure Data Storage, M4 - Unintended Data
Leakage
CWE: CWE-538 - File and Directory Information Exposure

Avoid Storing App Data in Backups

DETAILS

REMEDIATION

Android

iOS

CWE/OWASP
•

•

Secure Mobile Development Best Practices | NowSecure

52Avoid Storing App Data in Backups

https://www.owasp.org/index.php/Mobile_Top_10_2014-M2
https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/538.html

Avoid Caching App Data
Avoid Crash Logs
Limit Caching of Username
Carefully Manage Debug Logs
Be Aware of the Keyboard Cache
Be Aware of Copy and Paste

CACHING AND LOGGING
•
•
•
•
•
•

Secure Mobile Development Best Practices | NowSecure

53Caching and Logging

Data can be captured in a variety of artifacts – many unintended. Developers often
overlook some of the ways data can be stored including log/debug files, cookies, web
history, web cache, property lists, files and SQLite databases. Storing data securely on a
mobile device requires proper technique. Whenever possible, simply do not
store/cache data. This is the most sure way to avoid data compromise on the device.

Prevent HTTP caching. Developers can configure iOS and Android to not cache web
data, particularly HTTPS traffic. In iOS look into implementing an NSURLConnection
delegate and disabling newCachedResponse. In addition, we recommend that steps be
taken to avoid caching of URL history and page data for any Web process such as
registration. HTTP Caching headers are important in this, and are configured on the web
server. The HTTP protocol supports a “no-store” directive in a response header that
instructs the browser that it must not store any part of either the response or the request
that elicited it. For Web applications, HTML form inputs can use the autocomplete=off
setting to instruct browsers not to cache values. The avoidance of caching should be
validated through forensic examination of device data after app utilization.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

M2 - Insecure Data Storage, M4 - Unintended Data Leakage
CWE 312, 313, 522, 200

Avoid Caching App Data

DETAILS

REMEDIATION

REFERENCES
•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

54Avoid Caching App Data

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
https://www.owasp.org/index.php/Mobile_Top_10_2014-M2
https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/313.html
http://cwe.mitre.org/data/definitions/522.html
http://cwe.mitre.org/data/definitions/200.html

There are several frameworks for tracking user usage and collect crash logs for iOS and
Android, both are useful tools for development, but it is important to find a balance
between enough debug information for the developers and reduced information for
attackers.

If an app crashes, the resulting log can provide valuable info to an attacker.

Ensure released apps are built without warnings and are thoroughly tested to avoid
crashes. This is certainly always the goal and worth mentioning due to the value of a
crash log. Consider disabling NSAssert for iOS. This setting will cause an app to crash
immediately if an assertion fails. It is more graceful to handle the failed assertion than to
crash and generate the crash log. Also, avoid sending crash logs over the network in
plaintext.

Use secure development tools like clang-analyzer, coverity, ASAN and other linting
utilities in order to identify all possible operations that can make the app crash or
missfunction.

In addition, if the app is obfuscated and stripped, the developer will need keep an
address-to-symbol database in order to recover meaningful backtraces in crashlogs,
making attacker's life harder because of the lack of understandable names in functions.

M4 - Unintended Data Leakage
CWE 215

Avoid Crash Logs

DETAILS

REMEDIATION

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

55Avoid Crash Logs

https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/215.html

On iOS, when the user enables the “Save this User ID” feature, the username is cached
within the CredentialsManager object. At runtime, the username is loaded into memory
before any type of authentication occurs, allowing potential for a malicious process to
intercept the username.

It is difficult to offer the user convenience of a stored username while avoiding leakage
of such information either through insecure storage or potential interception at runtime.
Although not as sensitive as the password, username is private data that should be
protected. One potential method that offers a cached username option with higher
security is to store a masked username instead of the actual username, and replace the
username value in authentication with a hash value. The hash value can be created
including a unique device token stored on registration. The benefit of a process that uses
a hash and device token is that the actual username is not stored locally or loaded into
memory unprotected, and the value copied to another device or used on web would not
be adequate. A malicious user would have to uncover more information to successfully
steal the authentication username.

http://resources.infosecinstitute.com/ios-application-security-part-20-local-data-
storage-nsuserdefaults-coredata-sqlite-plist-files/

M2 - Insecure Data Storage; M4 - Unintended Data Leakage
CWE 312, 313, 522

Limit Caching of Username

DETAILS

REMEDIATION

REFERENCES
•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

56Limit Caching of Username

http://resources.infosecinstitute.com/ios-application-security-part-20-local-data-storage-nsuserdefaults-coredata-sqlite-plist-files/
https://www.owasp.org/index.php/Mobile_Top_10_2014-M2
https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/313.html
http://cwe.mitre.org/data/definitions/522.html

Debug logs are generally designed to be used to detect and correct flaws in an
application. These logs can leak sensitive information that may help an attacker create a
more powerful attack.

Developers should consider the risk that debug logs may pose in a production setting.
Generally we recommend that they are disabled in production.

The Android system log typically used by apps for outputting debug messages is a
circular buffer of a few kilobytes stored in memory. It may also be possible to recover
debug logs from the filesystem in the event of a kernel panic. On device reboot it is
cleared, but until then any Android app with the READ_LOGS permission can
interrogate the logs. In more recent versions of Android the log files have been more
carefully isolated and do not require system level permissions to be requested.

In Android one can also can leverage ProGuard or DexGuard to completely remove the
method calls to the Log class in release builds, thus stripping all the calls to Log.d, Log.i,
Log.v, Log.e methods.

In proguard.cfg, add the following snippet:

>	-assumenosideeffects	class	android.util.Log	{	
								>	public	static	***	d(...);
								>	public	static	***	v(...);
								>	public	static	***	i(...);
								>	public	static	***	e(...);
>	}

On iOS disabling the NSLog statements on will remove potentially sensitive information
which can be intercepted and as an added benefit may slightly increase the performance

Carefully Manage Debug Logs

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

57Carefully Manage Debug Logs

of the app. For example, one approach is to define NSLog without a substitution in
production builds:

>	#define	NSLog(s,...)

This	macro	effectively	removes	all	NSLog	statements	and	replaces	it	with	empty	text	at	compilation	time.

>	NSLog(@”Breakpoint	here	with	data	%@”,data.description);

becomes	effectively	a	no-op.

>				;

M10 - Lack of Binary Protections; M8 - Security Decisions via Untrusted Inputs
CWE 215

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

58Carefully Manage Debug Logs

https://www.owasp.org/index.php/Mobile_Top_10_2014-M10
https://www.owasp.org/index.php/Mobile_Top_10_2014-M8
http://cwe.mitre.org/data/definitions/215.html

iOS logs what users type in order to provide features such as customized auto-correct
and form completion, but sensitive data may also be stored. Almost every non-numeric
word is cached in the keyboard cache in the order it was typed; the cache’s contents are
beyond the administrative privileges of the application, and so the data cannot be
removed from the cache by the application.

Disable the auto-correct feature for any sensitive information, not just for password
fields. Since the keyboard caches sensitive information, it may be recoverable. For
UITextField, look into setting the autocorrectionType property to
UITextAutocorrectionTypeNo to disable caching. These settings may change over time
as the SDK updates so ensure it is fully researched. Add an enterprise policy to clear the
keyboard dictionary at regular intervals. This can be done by the end user by simply
going to the Settings application, General > Reset > Reset Keyboard Dictionary.

Android contains a user dictionary, where words entered by a user can be saved for
future auto-correction. This user dictionary is available to any app without special
permissions. For increased security, consider implementing a custom keyboard (and
potentially PIN entry), which can disable caching and provide additional protection
against malware.

M4 - Unintended Data Leakage
CWE 200

Be Aware of the Keyboard Cache

DETAILS

REMEDIATION

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

59Be Aware of the Keyboard Cache

https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/200.html

Both iOS and Android support copy/paste. Sensitive data may be stored, recoverable, or
could be modified from the clipboard in clear text, regardless of whether the source of
the data was initially encrypted. If it is in plaintext at the moment the user copies it, it will
be in plaintext when other applications access the clipboard.

For example, it follows strictier rules, this means that applications cannot read or write
the clipboard, and the only way to use it is by user interaction, doing long-taps to raise
the clipboard menu.

Where appropriate, disable copy/paste for areas handling sensitive data. Eliminating the
option to copy can help avoid data exposure. On Android the clipboard can be accessed
by any application and so it is recommended that appropriately configured Content
Providers be used to transfer complex sensitive data. On iOS consider whether the user
will need to copy/paste data within the app or system-wide, and choose the appropriate
type of pasteboard.

In addition, it can be interesting to clear the clipboard after taking the contents, to avoid
other apps read them and leak what the user is doing.

M4 - Unintended Data Leakage
CWE 200

Be Aware of Copy and Paste"

DETAILS

REMEDIATION

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

60Be Aware of Copy and Paste

https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/200.html

Prevent Framing and Clickjacking
Protect against CSRF with form tokens

WEBVIEWS
•
•

Secure Mobile Development Best Practices | NowSecure

61Webviews

Framing involves delivery of a Web/WAP site within an iFrame. This attack can enable
the “wrapper” site to execute a clickjacking attack. Clickjacking is a very real threat that
has been exploited on high-profile services (e.g., Facebook) to steal information or
redirect users to attacker controlled sites.

The primary purpose for framing is to trick users into clicking on something different that
what they intended. The goal is to gather confidential information or take control of the
affected computer through chained vulnerabilities like Cross Site Scripting. This attack
commonly takes the form of a script that is embedded within the source code, which is
executed without the user’s knowledge. It can be triggered when users click a button that
appears to perform other function.

The best way to prevent this practice in iOS is to not use WebViews. Also use

-	(NSString	*)stringByEvaluatingJavaScriptFromString:(NSString	*)script

very, very carefully (click here for more info on the NSString Class Reference).

One mechanism for the prevention of framing leverages client-side JavaScript. Most
Web sites are no longer designed or able to run without JavaScript, so the
implementation of security measures in JavaScript (and disabling site without it) is an
option. Though client-side and therefore not impervious to tampering, this layer does
raise the bar for the attacker. Below is an example of JavaScript code that forces the site
to the “top” frame, thereby “busting” a frame which had loaded the site.

There are additional steps an attacker can add to their frame to attempt to prevent the
frame busting code, such as an alert to the user on unload asking them not to exit. More
complex JavaScript may be able to counter such techniques. The inclusion of at least

Prevent Framing and Clickjacking

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

62Prevent Framing and Clickjacking

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html#//apple_ref/doc/c_ref/NSString

basic frame busting code makes simple framing a much more difficult process.

X-FRAME-OPTIONS HEADER– A new and better anti-framing option has recently been
implemented in some browsers, based on an HTTP Header sent in the response. By
configuring this header at the Webserver level, the browser is instructed not to display
the response content in a frame or iFrame. An example implementation of this in an
Apache config file is provided in the code examples.

APIs designed specifically for WebView can be abused to compromise the security of
web contents specified inside a WebView. The best way to protect an application and its
users against this well-known vulnerability is to:

Prevent the X-Frame-Option HTTP response header from loading frames that
request content hosted on other domain names. However, this mitigation is not
applicable when dealing with a compromised host.

Leverage internal defense mechanisms to ensure that all UI elements load in top
level frames; Thus avoiding serving content through untrusted frames setup at lower
levels.

https://developer.mozilla.org/en/The_X-FRAME-OPTIONS_response_header

Basic frame busting javascript:

if(self	!=	top)	{	
		top.location	=	self.location	;
}

IFrame prevention for server-side Apache config file:

Header	add	X-FRAME-OPTIONS	"DENY"

Another option is to set this value to “SAMEORIGIN” which will only allow a frame from
the same domain. This header has been tested on various browsers including Safari on

•

•

REFERENCES
•

Secure Mobile Development Best Practices | NowSecure

63Prevent Framing and Clickjacking

https://developer.mozilla.org/en/The_X-FRAME-OPTIONS_response_header

iOS 4 and confirmed to prevent the display of a page in an iFrame. Provided that no
requirements exist for delivery in an iFrame, the recommendation is to use DENY.

M1 - Weak Server Side Controls
CWE 20

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

64Prevent Framing and Clickjacking

https://www.owasp.org/index.php/Mobile_Top_10_2014-M1
http://cwe.mitre.org/data/definitions/20.html

CSRF (Cross-site Request Forgery) relies on known or predictable form values and a
logged-in browser session.

Each form submission should contain a token which was loaded with the form or at the
beginning of a user session. Check this token on the server when receiving POST
requests to ensure the user originated it. This capability is provided with major web
platforms and can be implemented on forms with minimal custom development.

http://op-co.de/blog/posts/android_ssl_downgrade/

M1 - Weak Server Side Controls
CWE 325

Protect Against CSRF with Form
Tokens

DETAILS

REMEDIATION

REFERENCES
•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

65Protect against CSRF with form tokens

http://op-co.de/blog/posts/android_ssl_downgrade/
https://www.owasp.org/index.php/Mobile_Top_10_2014-M1
http://cwe.mitre.org/data/definitions/325.html

Use the Keychain Carefully
Avoid Cached Application Snapshots
Implement Protections Against Buffer Overflow Attacks
Avoid Caching HTTP(S) Requests/Responses
Implement App Transport Security (ATS)
Implement Touch ID Properly

IOS
•
•
•
•
•
•

Secure Mobile Development Best Practices | NowSecure

66iOS

iOS provides the keychain for secure data storage. However, in several scenarios, the
keychain can be compromised and subsequently decrypted.

In all versions of iOS up to and including iOS 7, the keychain can be partially
compromised if an attacker has access to the encrypted iTunes backup. Because of how
iOS re-encrypts keychain entries when creating iTunes backups, the keychain can be
partially decrypted when an iTunes backup is available and the password for backup
encryption is known. However, iTunes backups that are not encrypted do not allow for
the decryption of keychain items.

Keychain access controls are rendered ineffective if a jailbreak has been applied to the
device. In the case of a jailbreak, any application running on the device can potentially
read every other application’s keychain items.

Lastly, for older devices (e.g., iPhone 4) for which BootROM exploits exist, the keychain
can be compromised by an attacker that has physical access to the device.

When storing data in the keychain, use the most restrictive protection class (as defined
by the 	kSecAttrAccessible	 attribute) that still allows your application to function properly.
For example, if your application is not designed to run in the background, use
	kSecAttrAccessibleWhenUnlocked	 or 	kSecAttrAccessibleWhenUnlockedThisDeviceOnly	.

To prevent the exposure of keychain items via iTunes backup, use the ThisDeviceOnly
protection class where practical.

Finally, for highly sensitive data, consider augmenting protections offered by the
keychain with application-level encryption. For example, rely upon the user to enter a
passphrase to authenticate within the application, and then use that passphrase to
encrypt data before storing it into the Keychain.

Use the Keychain Carefully

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

67Use the Keychain Carefully

Keychain Services Programming Guide

M2 - Insecure Data Storage; M5 - Poor Authorization and Authentication
CWE-312: Cleartext Storage of Sensitive Information
CWE-522: Insufficiently Protected Credentials

REFERENCES
•

CWE/OWASP
•
•
•

Secure Mobile Development Best Practices | NowSecure

68Use the Keychain Carefully

https://developer.apple.com/library/ios/documentation/security/Conceptual/keychainServConcepts/01introduction/introduction.html#//apple_ref/doc/uid/TP30000897
https://www.owasp.org/index.php/Mobile_Top_10_2014-M2
https://www.owasp.org/index.php/Mobile_Top_10_2014-M5
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/522.html

In order to provide the visual transitions in the interface, iOS has been proven to capture
and store snapshots (screenshots or captures) as images stored in the file system
portion of the device NAND flash. This occurs when an application suspends (rather
than terminates), when either the home button is pressed, or a phone call or other event
temporarily suspends the application. These images can often contain user and
application data. In one published case, they contained the user’s full name, DOB,
address, employer, and credit scores.

To protect sensitive data, block caching of application snapshots using API configuration
or code.

When applicationDidEnterBackground: method returns, the snapshot of the application
user interface is taken, and it’s used for transition animations and stored in the
filesystem. This method should be overridden and all the sensitive information in the
user interface should be removed before it returns. This way the snapshot will not
contain them.

Managing Your Applications Flow

M4 - Unintended Data Leakage; M2 - Insecure Data Storage
CWE 200

Avoid Cached Application Snapshots

DETAILS

REMEDIATION

REFERENCES
•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

69Avoid Cached Application Snapshots

https://developer.apple.com/library/iOS/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html#//apple_ref/doc/uid/TP40007072-CH4-SW47
https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
https://www.owasp.org/index.php/Mobile_Top_10_2014-M2
http://cwe.mitre.org/data/definitions/200.html

This best practice covers three iOS code implementations that help developers mitigate
the risk of buffer overflow attacks on their app: automatic reference counting (ARC),
address space layout randomization (ASLR), and stack-smashing protection.

Automatic Reference Counting (ARC) is a memory management system that handles
the reference count of objects automatically at compile time, instead of leaving this task
to the developer. This feature was introduced with iOS 5, but it can be backported to
previous versions because the operations are performed at compile time.

The compiler will insert the release and retain calls automatically, making the
developer’s life easier, and reduce the risk of introducing vulnerabilities related to
the object's memory lifecycle.
Because the process occurs at compile time it does not introduce any runtime
overhead, unlike a garbage collector for example. So there are no obvious
drawbacks in switching to ARC.

ASLR (Address space layout randomization) is a security feature introduced in iOS 4.3
that randomizes how an app is loaded and maintained in memory. ASLR randomizes the
address space used in the application, making it difficult to execute malicious code
without first causing the application to crash. It also complicates the process of dumping
allocated memory of the application. This test checks to see if the application binary was
compiled with the -PIE (position-independent executable) flag.

When an application is compiled with stack-smashing protection, a known value or

Implement Protections Against Buffer
Overflow Attacks

DETAILS

Automatic reference counting (ARC)

•

•

Address space layout randomization (ASLR)

Stack-smashing protection

Secure Mobile Development Best Practices | NowSecure

70Implement Protections Against Buffer Overflow Attacks

"canary" is placed on the stack directly before the local variables to protect the saved
base pointer, saved instruction pointer, and function arguments. The value of the canary
is verified upon the function return to see if it has been overwritten. The compiler uses a
heuristic to intelligently apply stack-smashing protection to a function (typically functions
that use character arrays).

Enable ARC - Enable ARC in the Xcode project, or migrate existing projects to ARC
using the refactoring tool in Xcode.

Implement full ASLR protection - Compile the application with support for PIE. PIE
can be enabled when compiling by command line with option 	-PIE	 (on iOS 4.3 or later).

Implement stack-smashing protection - Compile the application with the 	-fstack-
protector-all	 compiler flag to protect your application against buffer overflow attacks.

Transitioning to ARC Release Notes -
https://developer.apple.com/library/content/releasenotes/ObjectiveC/RN-
TransitioningToARC/Introduction/Introduction.html

Address Space Layout Randomization -
https://developer.apple.com/library/prerelease/content/documentation/Security/Conc
eptual/SecureCodingGuide/Articles/BufferOverflows.html#//apple_ref/doc/uid/TP400
02577-SW22

Other Compiler Flags That Affect Security -
https://developer.apple.com/library/content/documentation/Security/Conceptual/Sec
ureCodingGuide/Articles/BufferOverflows.html#//apple_ref/doc/uid/TP40002577-
SW26

OWASP Mobile Top 10: M10 - Lack of Binary Protections

REMEDIATION

REFERENCES
•

•

•

CWE/OWASP
•

Secure Mobile Development Best Practices | NowSecure

71Implement Protections Against Buffer Overflow Attacks

https://developer.apple.com/library/content/releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html
https://developer.apple.com/library/content/releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html
https://developer.apple.com/library/prerelease/content/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html#//apple_ref/doc/uid/TP40002577-SW22
https://developer.apple.com/library/prerelease/content/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html#//apple_ref/doc/uid/TP40002577-SW22
https://developer.apple.com/library/content/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html#//apple_ref/doc/uid/TP40002577-SW26
https://developer.apple.com/library/content/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html#//apple_ref/doc/uid/TP40002577-SW26
https://www.owasp.org/index.php/Mobile_Top_10_2014-M10

CWE: CWE-121 - Stack-based Buffer Overflow, CWE-200 - Information Exposure•

Secure Mobile Development Best Practices | NowSecure

72Implement Protections Against Buffer Overflow Attacks

https://cwe.mitre.org/data/definitions/121.html
http://cwe.mitre.org/data/definitions/200.html

By default, iOS’s 	NSURLRequest	 will cache responses in the Cache.db file. To prevent this
insecure behavior, a developer must explicitly disable caching.

The developer can set the 	cachePolicy	 property of the 	NSURLRequest	 to disable the
caching of HTTP(S) requests and responses. One of many methods for disabling
caching is shown in the following code snippet (from NSURLConnection Delegate
Returns Null on Stack Overflow -
http://stackoverflow.com/questions/30667340/nsurlconnection-delegate-returns-null):

	(NSCachedURLResponse)connection:(NSURLConnection)connection	willCacheResponse:
(NSCachedURLResponse	*)cachedResponse	{	return	nil;	

Developers can find additional methods for disabling the caching of HTTP(S) requests
and responses in the Apple Developer article “Understanding Cache Access” referenced
below.

Understanding cache access -
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/URLLoa
dingSystem/Concepts/CachePolicies.html

OWASP Mobile Top 10: M2 - Insecure Data Storage, M4 - Unintended Data
Leakage

Avoid Caching HTTP(S)
Requests/Responses

DETAILS

REMEDIATION

REFERENCES
•

CWE/OWASP
•

Secure Mobile Development Best Practices | NowSecure

73Avoid Caching HTTP(S) Requests/Responses

http://stackoverflow.com/questions/30667340/nsurlconnection-delegate-returns-null
http://stackoverflow.com/questions/30667340/nsurlconnection-delegate-returns-null
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/URLLoadingSystem/Concepts/CachePolicies.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/URLLoadingSystem/Concepts/CachePolicies.html
https://www.owasp.org/index.php/Mobile_Top_10_2014-M2
https://www.owasp.org/index.php/Mobile_Top_10_2014-M4

CWE: CWE-312 - Cleartext Storage of Sensitive Information, CWE-313 - Cleartext
Storage in a File or on Disk, CWE-522 - Insufficiently Protected Credentials

•

Secure Mobile Development Best Practices | NowSecure

74Avoid Caching HTTP(S) Requests/Responses

http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/313.html
http://cwe.mitre.org/data/definitions/522.html

New in iOS 9, App Transport Security (ATS) helps ensure secure connections between
an app and any back-end server(s). It is enabled by default when an app is linked
against the iOS 9.0 SDK or later. With ATS enabled, HTTP connections are forced to
use HTTPS (TLS v1.2) and any attempts to connect using insecure HTTP will fail.

Implementing ATS includes a couple of options:

A developer can enable ATS globally (by linking to iOS 9.0 or later SDK) and then
choose to decrease ATS restrictions on a specific server using an exception key
A developer can disable ATS globally (by setting the NSAllowsArbitraryLoads key to
YES) and then use an exception to increase ATS restrictions on a specific server

For apps running on iOS 9.0 or higher, best practice is to enable ATS globally by linking
to the iOS 9.0 or later SDK and NOT setting the 	NSAllowsArbitraryLoads	 key to 	Yes	 or
	True	. Apple currently allows developers to include exceptions for any domains for which
TLS cannot be enforced. Exceptions can be made using the
	NSExceptionAllowsInsecureHTTPLoads	 or 	NSThirdPartyExceptionAllowsInsecureHTTPLoads	
keys. It is important to note that beginning in January 2017, Apple will no longer accept
exceptions and all communications must use ATS.

App Transport Security REQUIRED January 2017 -
https://forums.developer.apple.com/thread/48979

Implement App Transport Security
(ATS)

DETAILS

•

•

REMEDIATION

REFERENCES
•

CWE/OWASP

Secure Mobile Development Best Practices | NowSecure

75Implement App Transport Security (ATS)

https://forums.developer.apple.com/thread/48979
https://forums.developer.apple.com/thread/48979

OWASP Mobile Top 10: M3 - Insufficient Transport Layer Protection
CWE: CWE-319 - Cleartext Transmission of Sensitive Information

•
•

Secure Mobile Development Best Practices | NowSecure

76Implement App Transport Security (ATS)

https://www.owasp.org/index.php/Mobile_Top_10_2014-M3
http://cwe.mitre.org/data/definitions/319.html

Touch ID is commonly known for its use in allowing a user to authenticate to and unlock
their device without entering a passcode. Some developers also use Touch ID to allow
the user to authenticate to their app using a stored device fingerprint.

When a developer implements Touch ID in their app, they typically do so in one of two
ways:

When using Touch ID for authentication, store the app’s secret in the Keychain with an
ACL assigned to that item. With this method, iOS performs a user presence check
before reading and returning Keychain items to the app. Developers can find sample
code on the Apple website at
https://developer.apple.com/library/ios/samplecode/KeychainTouchID/Listings/Keychain
TouchID_AAPLKeychainTestsViewController_m.html.

KeychainTouchID: Using Touch ID with Keychain and LocalAuthentication -
https://developer.apple.com/library/content/samplecode/KeychainTouchID/Introducti
on/Intro.html

Implement Touch ID Properly

DETAILS

Using only the Local Authentication framework to authenticate the user
This method leaves the authentication mechanism vulnerable to bypass2.
An attacker can modify the local check at runtime, or by patching the binary.
This is done by overriding the 	LAContextevaluatePolicy:localizedReason:reply	
method implementation

3.

3.

Using Keychain access control lists (ACLs)4.

REMEDIATION

REFERENCES
•

Secure Mobile Development Best Practices | NowSecure

77Implement Touch ID Properly

https://developer.apple.com/library/ios/samplecode/KeychainTouchID/Listings/KeychainTouchID_AAPLKeychainTestsViewController_m.html
https://developer.apple.com/library/content/samplecode/KeychainTouchID/Introduction/Intro.html
https://developer.apple.com/library/content/samplecode/KeychainTouchID/Introduction/Intro.html

OWASP Mobile Top 10: M5 - Poor Authorization and Authentication
CWE: CWE-288 - Authentication Bypass Using an Alternate Path or Channel

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

78Implement Touch ID Properly

https://www.owasp.org/index.php/Mobile_Top_10_2014-M5
http://cwe.mitre.org/data/definitions/288.html

Implement File Permissions Carefully
Implement Intents Carefully
Check Activities
Use Broadcasts Carefully
Implement PendingIntents Carefully
Protect Application Services
Avoid Intent Sniffing
Implement Content Providers Carefully
Follow WebView Best Practices
Avoid Storing Cached Camera Images
Avoid GUI Objects Caching
Sign Android APKs

ANDROID
•
•
•
•
•
•
•
•
•
•
•
•

Secure Mobile Development Best Practices | NowSecure

79Android

World readable files can act as a vector for your program to leak sensitive information.
World writeable files may expose your app by letting an attacker influence its behavior
by overwriting data that is read by your app from storage. Examples include settings files
and stored login information.

Do not create files with permissions of MODE_WORLD_READABLE or
MODE_WORLD_WRITABLE unless it is required as any app would be able to read or
write the file even though it may be stored in the app’s private data directory.

Note: these constants were deprecated in Android API level 17. Source:
http://developer.android.com/reference/android/content/Context.html

Do not use modes such as 0666, 0777, and 0664 with the chmod binary or syscalls
accepting a file mode (chmod, fchmod, creat, etc)

M2 - Insecure Data Storage
CWE 280

Implement File Permissions Carefully

DETAILS

REMEDIATION

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

80Implement File Permissions Carefully

http://developer.android.com/reference/android/content/Context.html
https://www.owasp.org/index.php/Mobile_Top_10_2014-M2
http://cwe.mitre.org/data/definitions/280.html

Intents are used for inter-component signaling and can be used

To start an Activity, typically opening a user interface for an app
As broadcasts to inform the system and apps of changes
To start, stop, and communicate with a background service
To access data via ContentProviders
As callbacks to handle events

Improper implementation could result in data leakage, restricted functions being called
and program flow being manipulated.

Components accessed via Intents can be public or private. The default is dependent
on the intent-filter and it is easy to mistakenly allow the component to be or become
public. It is possible to set component as android:exported=false in the app’s
Manifest to prevent this.

Public components declared in the Manifest are by default open so any application
can access them. If a component does not need to be accessed by all other apps,
consider setting a permission on the component declared in the Manifest.

Data received by public components cannot be trusted and must be scrutinized.

M8 - Security Decisions via Untrusted Inputs; M10 - Lack of Binary Protections
CWE 927

Implement Intents Carefully

DETAILS

•
•
•
•
•

REMEDIATION
•

•

•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

81Implement Intents Carefully

https://www.owasp.org/index.php/Mobile_Top_10_2014-M8
https://www.owasp.org/index.php/Mobile_Top_10_2014-M10
http://cwe.mitre.org/data/definitions/316.html

Typically in Android applications an Activity is a 'Screen' in an app.

An Activity can be invoked by any application if it is 	exported	 and 	enabled	. This could
allow an attacker to load UI elements in a way the developer may not intend, such as
jumping past a password lock screen to access data or functionality. By default Activities
are not exported, however, if you define an Intent filter for an Activity it will be exported
by the system.

Activities can ensure proper behavior by checking internal app state to verify they are
ready to load. For example, first see if the app is in the "unlocked" state and if not jump
back to the lock screen. Regardless of what Intent filters are defined, 	exported	/	enabled	
Activities can be directly invoked with unsanitized data, so input validation is
recommended when operating on data provided by an untrusted source.

Sample Code of passing intent extra ID instead of the whole object.

//bad	passing	the	whole	paracable	object
public	static	Intent	getStartingIntent(Context	context,
								User	user)	{
				Intent	i	=	new	Intent(context,	UserDetailsActivity.class);
				i.putExtra(EXTRA_USER,	user);
				return	i;
}

//better	to	pass	just	the	ID	to	lookup	the	user	details
public	static	Intent	getStartingIntent(Context	context,
								String	userId)	{
				Intent	i	=	new	Intent(context,	UserDetailsActivity.class);
				i.putExtra(EXTRA_USER_ID,	userId);
		return	i;
}

Check Activities

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

82Check Activities

http://developer.android.com/guide/topics/manifest/activity-element.html

Avoid intent filters on Activities if they are private, instead use explicit intent.

<activity
				android:name="com.app.YourActivity"
				android:label="@string/app_name"
				android:excludeFromRecents="true"
				android:exported="false"	>
</activity>

http://commonsware.com/blog/2013/09/11/beware-accidental-apis-avoid-intents-
extras.html
http://commonsware.com/blog/2014/04/30/if-your-activity-has-intent-filter-export-
it.html

M8 - Security Decisions via Untrusted Inputs; M10 - Lack of Binary Protections
CWE-927: Use of Implicit Intent for Sensitive Communication

REFERENCES
•

•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

83Check Activities

http://commonsware.com/blog/2013/09/11/beware-accidental-apis-avoid-intents-extras.html
http://commonsware.com/blog/2014/04/30/if-your-activity-has-intent-filter-export-it.html
https://www.owasp.org/index.php/Mobile_Top_10_2014-M8
https://www.owasp.org/index.php/Mobile_Top_10_2014-M10
http://cwe.mitre.org/data/definitions/927.html

If no permission is set when sending a broadcast Intent, then any unprivileged app can
receive the Intent unless it has an explicit destination.

An attacker could take advantage of an Intent that doesn't have any set permissions in
the following way:

Create a malicious app that includes a component with the same name as a
legitimate component
As long as that name (or namespace) is not already in use, the malicious app will
install on the target device
Extract sensitive data from the broadcast Intent sent to that component name"?

Use permissions to protect Intents in your application. Keep in mind that when sending
information via a broadcast Intent to a third party component, that component could have
been replaced by a malicious install.

https://developer.android.com/training/articles/security-tips.html#Permissions
http://shop.oreilly.com/product/0636920022596.do

M8 - Security Decisions via Untrusted Inputs; M10 - Lack of Binary Protections
CWE-925: Improper Verification of Intent by Broadcast Receiver

Use Broadcasts Carefully

DETAILS

•

•

•

REMEDIATION

REFERENCES
•
•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

84Use Broadcasts Carefully

https://developer.android.com/training/articles/security-tips.html#Permissions
http://shop.oreilly.com/product/0636920022596.do
https://www.owasp.org/index.php/Mobile_Top_10_2014-M8
https://www.owasp.org/index.php/Mobile_Top_10_2014-M10
http://cwe.mitre.org/data/definitions/925.html

A PendingIntent allows an app to pass an Intent to a second application that can then
execute that Intent as if it were the originating app (i.e., with the same permissions).

With a PendingIntent, an app can pass an Intent to a second application that can then
execute that Intent as if it were the originating app (i.e., with the same permissions). This
allows other apps to call back to the originating app's private components. The external
app, if malicious, may try to influence the destination and/or data/integrity.

Use PendingIntents as delayed callbacks to private BroadcastReceivers or broadcast
activities, and explicitly specify the component name in the base Intent.

Sample code here https://gist.github.com/scottyab/d5ab6a284622ebc46d5a

M8 - Security Decisions via Untrusted Inputs; M10 - Lack of Binary Protections
CWE-927: Use of Implicit Intent for Sensitive Communication

Implement PendingIntents Carefully

DETAILS

REMEDIATION

REFERENCES
•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

85Implement PendingIntents Carefully

https://gist.github.com/scottyab/d5ab6a284622ebc46d5a
https://www.owasp.org/index.php/Mobile_Top_10_2014-M8
https://www.owasp.org/index.php/Mobile_Top_10_2014-M10
http://cwe.mitre.org/data/definitions/927.html

Services are typically used for background processing. Like BroadcastReceivers and
application activities, application services can be invoked by external applications and so
should be protected by permissions and export flags.

A service may have more than one method which can be invoked from an external
caller. It is possible to define arbitrary permissions for each method and check if the
calling package has the corresponding permission by using 	checkPermission()	.
Alternatively, one could define separate services and secure access through the use of
permissions defined in the AndroidManifest.

When calling a service with sensitive data, validate that the correct service is being
called and not a malicious service. If you know the exact name of the component to
which you wish to connect, specify that name in the Intent used to connect. Another
method is to use 	checkPermission()	 again to verify whether the calling package has the
permissions required to receive the desired Intent. The user grants permissions to the
app during installation.

Here is an example where a custom permission is declared and required to be used
when accessing the 	com.example.MyService.	

<permission	android:name="com.example.mypermission"	
android:label="my_permission"	android:protectionLevel="dangerous"></permission>`

<service

				android:name="com.example.MyService"

				android:permission="com.example.mypermission">

Protect Application Services

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

86Protect Application Services

				<intent-filter>

								<action	android:name="com.example.MY_ACTION"	/>

				</intent-filter>

</service>

M8 - Security Decisions via Untrusted Inputs; M10 - Lack of Binary Protections
CWE-280: Improper Handling of Insufficient Permissions or Privileges

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

87Protect Application Services

https://www.owasp.org/index.php/Mobile_Top_10_2014-M8
https://www.owasp.org/index.php/Mobile_Top_10_2014-M10
http://cwe.mitre.org/data/definitions/280.html

When an activity is initiated by another application using a broadcast intent, the data
passed in the intent can be read by a malicious app.

When another application initiates activity by sending a broadcast intent, malicious apps
can read the data included in the intent. The malicious app can also read a list of recent
intents for an application. For example, if an app invokes and passes a URL to the
Android web browser, an attacker could sniff that URL.

Do not pass sensitive data between apps using broadcast intents. Instead, use explicit
intents.

M8 - Security Decisions via Untrusted Inputs; M10 - Lack of Binary Protections
CWE 285: Improper Authorization

Avoid Intent Sniffing

DETAILS

REMEDIATION

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

88Avoid Intent Sniffing

https://www.owasp.org/index.php/Mobile_Top_10_2014-M8
https://www.owasp.org/index.php/Mobile_Top_10_2014-M10
http://cwe.mitre.org/data/definitions/285.html

Content providers allow apps to share data using a URI-addressing scheme and
relational database model. They can also be used to access files via the URI scheme.

Content providers can declare permissions and separate read and write access. Do not
give a content provider write access unless it's absolutely necessary. Make sure to set
permissions so that unprivileged apps cannot read the 	ContentProvider	 instance unless
required.

Limit access to the minimum required for an operation. For example, to share an instant
message with another app that emails that message to a contact, share only that single
message and not all instant messages. The record-level delegation feature within
content providers allows for the sharing of a specific record or file without sharing the
entire database. Once the external app returns to the originating app, the delegation
ends.

Treat parameters passed to content providers as untrusted input and don't use them
directly in SQL queries without sanitation. Without sanitation, SQL code can be sent via
content provider requests. If the SQL code is included in a query, it can return data or
give control to an attacker.

Content providers that serve files based on a file name being passed to the provider
should ensure path traversals are filtered out. For example, if an attacker were to include
	../../../file	 in a request, it could cause the program to read and return data from files
the attacker wouldn't otherwise have access to in the context of the application.
Additionally, be aware that following symlinks created by an attacker can have similar
results.

Implement Content Providers
Carefully

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

89Implement Content Providers Carefully

M7 - Client Side Injection
CWE 926: Improper Export of Android Application Components

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

90Implement Content Providers Carefully

https://www.owasp.org/index.php/Mobile_Top_10_2014-M7
http://cwe.mitre.org/data/definitions/926.html

WebViews can introduce a number of security concerns and should be implemented
carefully. In particular, a number of exploitable vulnerabilities arising from the use of the
addJavscriptInterface API have been discovered.

Disable JavaScript and Plugin support if they are not needed. While both are disabled by
default, best practices call for explicitly setting them as disabled. Disable local file
access. This restricts access to the app’s resource and asset directory and mitigates
against an attack from a web page which seeks to gain access to other locally
accessible files.

Disallow the loading of content from third-party hosts. This can be difficult to achieve
from within the app. However, a developer can override shouldOverrideUrlLoading and
shouldInterceptRequest to intercept, inspect, and validate most requests initiated from
within a WebView. A developer may also consider implementing a whitelist scheme by
using the URI class to inspect components of a URI to ensure it matches an entry within
a list of approved resources.

Sample code https://gist.github.com/scottyab/6f51bbd82a0ffb08ac7a

http://labs.mwrinfosecurity.com/blog/2012/04/23/adventures-with-android-webviews/
https://developer.android.com/training/articles/security-tips.html#WebView

M10 - Lack of Binary Protections

Follow WebView Best Practices

DETAILS

REMEDIATION

REFERENCES
•
•

CWE/OWASP
•

Secure Mobile Development Best Practices | NowSecure

91Follow WebView Best Practices

https://gist.github.com/scottyab/6f51bbd82a0ffb08ac7a
http://labs.mwrinfosecurity.com/blog/2012/04/23/adventures-with-android-webviews/
https://developer.android.com/training/articles/security-tips.html#WebView
https://www.owasp.org/index.php/Mobile_Top_10_2014-M10

CWE-79: Improper Neutralization of Input During Web Page Generation (Cross-site
Scripting)

•

Secure Mobile Development Best Practices | NowSecure

92Follow WebView Best Practices

http://cwe.mitre.org/data/definitions/79.html

Remote-check-deposit apps allow a person to take a picture of a check with their mobile
phone's camera and then send the image to their financial institution for deposit into their
account.

With remote-check-deposit apps, a person can take a picture of a check with their
mobile phone's camera and then send the image to their financial institution for deposit
into their account. Many of these apps will retain the check image (or part of it) in the
mobile device's NAND memory even after it is deleted.

Do not transmit a check image using non-volatile storage on the device where check
image artifacts may be left behind. One possible alternative is to:

This method will only maintain the image in volatile RAM and prevent the caching of the
check image in non-volatile storage.

Specifically with the Android Camera class, the method takePicture can be used
specifying a callback when the .jpg is generated using the 	Camera.PictureCallback	
interface. In particular, we are interested in the method “public void
onPictureTaken(byte[] bytes, Camera camera).”

Using this technique it’s possible to use the “bytes” array content, which will contain the
photograph in RAM.

Avoid Storing Cached Camera Images

DETAILS

REMEDIATION

Create a SurfaceView that displays a camera preview or live preview of what the
camera sensor is seeing

1.

Insert and program a button that when pressed returns the camera preview as a
pixel array

2.

Finally, convert the pixel array to bitmap, compress it to a .jpg, encode it to Base64,
and submit it to the remote location

3.

Secure Mobile Development Best Practices | NowSecure

93Avoid Storing Cached Camera Images

M4 - Unintended Data Leakage
CWE 200: Information Exposure

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

94Avoid Storing Cached Camera Images

https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/200.html

Remote check-deposit apps allow people to take a picture of a check with their device
and send it to their financial institution for deposit into an account.

Android retains application screens in memory, and multitasking can result in the
retention of an entire application in memory (even if the user logs out of their account).
This allows an attacker that finds or steals a device to navigate directly to retained
screens, which may include sensitive user data as part of the GUI. For example, if a user
logs-out of a banking app but doesn't quit or close the app, a screen displaying
transaction activity may be retained and viewable to an attacker.

To counter this, a developer has three common options:

M4 - Unintended Data Leakage
CWE 200: Information Exposure

Avoid GUI Objects Caching

DETAILS

REMEDIATION

Quit the app entirely when the user logs out. While it's against Android design
principles to quit your own app, it's far more secure because quitting the app will
destroy any retained GUI screens.

1.

Any time an activity is initiated or a screen is accessed, execute a check to
determine whether the user is in a logged-in state. If the user is not logged in,
present the log-in screen.

2.

Nullify the data on a GUI screen before leaving the screen or logging out.3.

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

95Avoid GUI Objects Caching

https://www.owasp.org/index.php/Mobile_Top_10_2014-M4
http://cwe.mitre.org/data/definitions/200.html

APKs should be signed correctly with a non-expired certificate.

Sign a production app with a production certificate, not a debug certificate
Make sure the certificate includes a sufficient validity period (i.e., won't expire during
the expected lifespan of the app)
Google recommends that your certificate use at least 2048-bit encryption
Make sure the keystore containing the signing key is properly protected
Also, restrict access to the keystore to only those people that absolutely require it

Here's an example of a Keytool command that generates a private key:

$	keytool	-genkey	-v	-keystore	my-release-key.keystore	-alias	alias_name	-keyalg	RSA	-keysize	2048	-validity	10000

https://developer.android.com/tools/publishing/app-signing.html#cert

M6 - Broken Cryptography
CWE-310: Cryptographic Issues
CWE-326: Inadequate Encryption Strength

Sign Android APKs

DETAILS

REMEDIATION
•
•

•
•
•

REFERENCES
•

CWE/OWASP
•
•
•

Secure Mobile Development Best Practices | NowSecure

96Sign Android APKs

https://developer.android.com/tools/publishing/app-signing.html#cert
https://www.owasp.org/index.php/Mobile_Top_10_2014-M6
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/326.html

Implement Proper Web Server Configuration
Properly Configure Server-side SSL
Use Proper Session Management
Protect and Perform Penetration Testing of Web Services
Protect Internal Resources

SERVERS
•
•
•
•
•

Secure Mobile Development Best Practices | NowSecure

97Servers

Certain settings on a web server can increase security. One commonly overlooked
vulnerability on a web server is information disclosure. Information disclosure can lead to
serious problems, because every piece of information attackers can gain from a server
makes staging an attack easier.

A simple way to reduce information disclosure is to disable verbose errors. Verbose
errors can be useful in a development environment, but in a production environment can
leak critical information such as web framework information and versions. Attackers can
use this information to target attacks that are designed to exploit implementation-specific
flaws.

Another simple way to reduce information disclosure is to return the minimum amount of
information in server responses. By default, Apache will return its version number, the
OS it is running on, and the plugins running. By changing a single line in the
configuration file, this can be pared down to only disclosing that the server is running
Apache with no effect on functionality.

One configuration change in servers that can greatly improve security is to change any
default directories. Attackers frequently search the Internet for sites with “low-hanging
fruit,” such as default logins, easily guessable admin interfaces, and simple naming
schemes for “hidden” directories. It is a good policy to obfuscate the locations of any
sensitive pages on a server that need to be web-accessible.

Administration or other restricted areas should not be publicly web-accessible unless
absolutely necessary, and must be resistant to brute force attacks. HTTP authentication
or forms authentication without lockout protection can (and will) be attacked by brute
force.

Implement Proper Web Server
Configuration

DETAILS

REMEDIATION

Secure Mobile Development Best Practices | NowSecure

98Implement Proper Web Server Configuration

M1 - Weak Server Side Controls
CWE 203

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

99Implement Proper Web Server Configuration

https://www.owasp.org/index.php/Mobile_Top_10_2014-M1
http://cwe.mitre.org/data/definitions/203.html

Many web servers allow lower encryption settings, such as the very weak, export-grade
40-bit encryption. Implement a strong cipher suite to protect information used in creating
shared keys, encrypting messages between clients and servers, and generating
message hashes and signatures that ensure the integrity of those messages. Also be
sure to disable weak protocols.

Ensure SSL certificates are properly installed and configured for the highest encryption
possible. If possible, enable only strong ciphers (128-bit and up) and SSLv3/TLSv1.

TLSv1 is more than 10 years old and was found vulnerable to a “renegotiation attack” in
2009.

Most servers using TLSv1 have been patched to close this vulnerability, but you
should verify this for relevant servers.
The TLSv1 protocol has been updated and the more current TLSv1.2 offers the
latest technology and strongest encryption ciphers available. Updating to the newer
version of TLS should harden and future-proof the application.

Avoid weak ciphers, such as:

NULL cipher suite
Anonymous Diffie-Hellmann
DES and RC4 (because of their vulnerability to crypto-analytical attacks)

Avoid weak protocols, such as:

SSLv2
SSLv3 (because of its vulnerability to the POODLE attack - CVE-2014-3566)
TLS 1.0 and below (because the protocols are vulnerable to the CRIME and BEAST

Properly Configure Server-side SSL

DETAILS

REMEDIATION

•

•

•
•
•

•
•
•

Secure Mobile Development Best Practices | NowSecure

100Properly Configure Server-side SSL

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-3566

attacks - CVE-2012-4929 and CVE-2011-3389 respectively)

Reference the OWASP Transport Layer Protection Cheat Sheet for more information
about how to securely design and configure transport layer security for an app.

Why Android SSL was downgraded from AES256-SHA to RC4-MD5 in late 2010 -
http://op-co.de/blog/posts/android_ssl_downgrade/

OWASP Mobile Top 10: M1 - Weak Server Side Controls
CWE: CWE-326 - Inadequate Encryption Strength

REFERENCES
•

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

101Properly Configure Server-side SSL

http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-4929
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2011-3389
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://op-co.de/blog/posts/android_ssl_downgrade/
http://op-co.de/blog/posts/android_ssl_downgrade/
https://www.owasp.org/index.php/Mobile_Top_10_2014-M1
http://cwe.mitre.org/data/definitions/326.html

Sessions for users are maintained on most apps via a cookie, which can be vulnerable.

Web languages (e.g. Java, .NET) offer session management, which is well-developed
and security tested. Keep server software up-to-date with security patches. Rolling your
own session management is more risky and undertaken only with proper expertise.
Ensure the size of the session cookie is sufficient. Short or predictable session cookies
make it possible for an attacker to predict, highjack or perform other attacks against the
session. Use high-security settings in session configuration.

M9 - Improper Session Handling
CWE 613

Use Proper Session Management

DETAILS

REMEDIATION

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

102Use Proper Session Management

https://www.owasp.org/index.php/Mobile_Top_10_2014-M9
http://cwe.mitre.org/data/definitions/613.html

A compromised server has the potential to intercept user credentials and launch other
attacks against app users.

In general, a production web server must be thoroughly tested and hardened against
malicious attack. Production server software should be updated to the latest versions,
and hardened to prevent information disclosures regarding server software and
interfaces.

Authentication forms should not reflect whether a username exists. If an attacker has a
method to determine valid usernames, they have a starting point for brute-force and
phishing attacks. Prevent username harvesting by providing the same response back to
the client for both “invalid user/pass combination” and “no such username found” events.
All login forms and forms/pages exchanging sensitive data should implement and require
HTTPS. Web servers should not allow client connections without SSL for such
resources. Turn off verbose errors, remove any legacy unnecessary sites or pages, and
continually harden Web resources against potential attacks.

M1 - Weak Server Side Controls
CWE 307, 200, etc. (could be multiple)

Protect and Pen Test Web Services

DETAILS

REMEDIATION

REFERENCES

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

103Protect and Perform Penetration Testing of Web Services

https://www.owasp.org/index.php/Mobile_Top_10_2014-M1
http://cwe.mitre.org/data/definitions/307.html
http://cwe.mitre.org/data/definitions/200.html

Resources for internal use such as administrator login forms frequently leverage
authentication that is not resistant to brute force. For example HTTP or forms
authentication without lockout. Compromise of administration or other internal resources
can lead to extensive data loss and other damage.

Such resources should be blocked from external access. Any resource that does not
require public Internet access should be restricted using firewall rules and network
segmentation. If a login page, admin area or other resource is accessible externally,
assume it will be discovered by malicious users and attacked by brute force.

M1 - Weak Server Side Controls
CWE 200 - Multiple CWE's

Protect Internal Resources

DETAILS

REMEDIATION

CWE/OWASP
•
•

Secure Mobile Development Best Practices | NowSecure

104Protect Internal Resources

https://www.owasp.org/index.php/Mobile_Top_10_2014-M1
http://cwe.mitre.org/data/definitions/200.html

	Introduction
	Mobile Security Primer
	Coding Practices
	Increase Code Complexity and Use Obfuscation
	Avoid Simple Logic
	Test Third-Party libraries
	Implement Anti-tamper Techniques
	Securely Store Sensitive Data in RAM
	Understand Secure Deletion of Data
	Avoid Query String for Sensitive Data

	Handling Sensitive Data
	Implement Secure Data Storage
	Use SECURE Setting For Cookies
	Fully validate SSL/TLS
	Protect Against SSL Downgrade Attacks
	Limit Use of UUID
	Treat Geolocation Data Carefully
	Institute Local Session Timeout
	Implement Enhanced/Two-Factor Authentication
	Protect Application Settings
	Hide Account Numbers and Use Tokens
	Implement Secure Network Transmission Of Sensitive Data
	Validate Input From Client
	Avoid Storing App Data in Backups

	Caching and Logging
	Avoid Caching App Data
	Avoid Crash Logs
	Limit Caching of Username
	Carefully Manage Debug Logs
	Be Aware of the Keyboard Cache
	Be Aware of Copy and Paste

	Webviews
	Prevent Framing and Clickjacking
	Protect against CSRF with form tokens

	iOS
	Use the Keychain Carefully
	Avoid Cached Application Snapshots
	Implement Protections Against Buffer Overflow Attacks
	Avoid Caching HTTP(S) Requests/Responses
	Implement App Transport Security (ATS)
	Implement Touch ID Properly

	Android
	Implement File Permissions Carefully
	Implement Intents Carefully
	Check Activities
	Use Broadcasts Carefully
	Implement PendingIntents Carefully
	Protect Application Services
	Avoid Intent Sniffing
	Implement Content Providers Carefully
	Follow WebView Best Practices
	Avoid Storing Cached Camera Images
	Avoid GUI Objects Caching
	Sign Android APKs

	Servers
	Implement Proper Web Server Configuration
	Properly Configure Server-side SSL
	Use Proper Session Management
	Protect and Perform Penetration Testing of Web Services
	Protect Internal Resources

